DOI QR코드

DOI QR Code

Modification of glass fiber bundle with functionalized coupling agents and phenolic resin

기능성 커플링제와 페놀수지에 의한 유리섬유 다발의 표면개질 연구

  • Lee, Soo (Department of Chemical Engineering, Changwon National University)
  • 이수 (창원대학교 화공시스템공학과)
  • Received : 2016.01.30
  • Accepted : 2016.03.31
  • Published : 2016.03.30

Abstract

The surface of glass fiber bundle was modified with functionalized silanes and phenolic resin to improve the tensile strength as well as the adhesion of glass fiber to matrix phenolic resin. The surface modification of reinforcing glass fiber can play a significant role in controlling whole composite characteristics. We applied surface modification of glass fiber with two different functionalized silanes, such as glycidyltrimethoxysilane(G-silane) and aminopropyltriethoxysilane (A-silane), and phenol formaldehyde(PF) resin in one pot or separated process under different coating compositions and temperatures. Thermal treatment temperature is very important factor to improve the mechanical properties of modified glass fiber. Modified glass fiber bundle treated at $170^{\circ}C$ showed the highest tensile strength of $10.05g_f/D$. Surface analyses by scanning electron microscope(SEM) and FT-IR spectroscopy were used to characterize the surface coatings on glass fiber bundles. Mechanical property changes as functions of treatment conditions and coupling agent types were also explained.

유리섬유 번들의 인장강도와 복합재료의 매트릭스수지인 페놀수지와의 접착성을 향상시키기 위하여 관능기를 가진 실란 커플링제와 페놀 수지를 이용하여 표면을 개질하였다. 일반적으로 보강재인 유리섬유의 표면을 화학적으로 개질하므로 복합재료의 특성을 조절할 수 있다. 본 연구에서는 에폭시계인 glycidyltrimethoxysilane(G-silane)과 아미노계 aminopropyltriethoxysilane (A-silane)과 페놀 수지를 사용하여 여러 농도와 온도에서 유리섬유 표면에 1단계 처리 및 2단계 복합처리를 수행하였다. 이 때 열처리 조건이 인장강도를 향상시키는 데 가장 중요하였다. 즉 $170^{\circ}C$에서 처리된 유리섬유의 인장강도가 $10.05g_f/D$로 최대를 나타내었다. 개질 후의 유리섬유 표면은 전자현미경과 적외선분광법을 이용하여 분석하였다. 실란의 종류와 처리 조건에 따른 유리 섬유 기계적 강도에 관한 영향도 고찰하였다.

Keywords

References

  1. K. ITO, Evaluation of surface treatment of glass fber in fabric-reinforced plastics, J. Poly. Sci.,, YLV, 133-160 (1960).
  2. O. E. Fedorova and T. L. Ragulina, Surface treatment of glass-reinforced plastics: Structural study of silane finish layers on the surface of glass fillers. Modification of finishes by transition metal salts, Rus. J. General Chem., 80(10), 2151-2156 (2010). https://doi.org/10.1134/S1070363210100440
  3. Takabara, A. Magome, T. and Kajiyama, T., Effect of glass fiber-matrix polymer interaction on fatigue characteristics of short glass fiber-reinforced poly(butylene terephthalate) based on dynamic viscoelastic measurement during the fatigue process, J. Polym. Sci, Polym., Phys., 32(5), 839-849 (1994). https://doi.org/10.1002/polb.1994.090320507
  4. J. B. Donnet and S. J. Park, Surface characteristics of pitchbased carbon fibers by inverse gas chromatography method, Carbon, 29, 955-961 (1991). https://doi.org/10.1016/0008-6223(91)90174-H
  5. W. Qin, K. Mai, and H. Zeng, Effect of macromolecular coupling agent on the property of PP/GF composites, J. Appl. Polym. Sci., 71(10), 1537-1542 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990307)71:10<1537::AID-APP1>3.0.CO;2-E
  6. E. Mader, K. Grundke, H.-J. Jacobasch,, and G. Wachinger, Surface, interphase and composite property relations in fibre-reinforced polymers, Composites, 25, 739-744 (1994). https://doi.org/10.1016/0010-4361(94)90209-7
  7. J. K. Kim and Y. W. Mai, Engineered interfaces in fibre reinforced composites, Elsevier, Oxford, UK (2006).
  8. A. K. Biswas, C. Cherif, R. -D. Hund, M. A. Shaywed, M. Hossain, Influence of coatings on tensile properties of glass fiber, Mat. Sci., 20(1) 50-54 (2014).
  9. Arkema Inc, U. S. Pat. Application 20150079403, Aqueous Fluoroplymer Glass Coating, (2015).
  10. D. Zang, F. Liu, M. Zhang, X. Niu, Z. Gao, and C. Wang, Superhydrophobic coating on fiberglass cloth for selective removal of oil from water, Chem. Eng. J., 262(15), 210-216 (2015). https://doi.org/10.1016/j.cej.2014.09.082
  11. S. Safi, A. Zadhoush, and M. Masoomi, Effects of chemical surface pretreatment on tensile properties of a single glass fiber and the glass fiber reinforced epoxy composite, Polymer Composites, Article first published online: DOI: 10.1002/ pc.23158 (2014).
  12. D. Repovsky, M. Michalka, and D. Velic, Thermal curing and water re-exposure of silane--PVA/PVAc complex film on glass fiber surface, Surf. Interface Anal., 47, 482-490 (2015), https://doi.org/10.1002/sia.5736
  13. H. Ishida, and J. L. Koenig, Fourier transform infrared spectroscopic study of the structure of silane coupling agent on E-glass fiber, J. Colloid & Interface Sci., 64(3), 565-576 (1978). https://doi.org/10.1016/0021-9797(78)90399-5
  14. W. S. Kim, D. J. Park, and Y. H. Kang, K. R. Ha, and W. Kim, Swelling ratio and mechanical Properties of SBR/ organoclay, Nanocomposites according to the mixing temperature; using 3-Aminopropyltriethoxysilane as a modifier and the latex method for manufacturing, Elastomers and Composites., 45(2), 112-121 (2010).