DOI QR코드

DOI QR Code

Properties of Dye Sensitized Solar Cells with Porous TiO2 Layers Using Polymethyl-Methacrylate Nano Beads

  • Choi, Minkyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • Received : 2016.01.05
  • Accepted : 2016.02.29
  • Published : 2016.04.27

Abstract

We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the $TiO_2$ layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with $0.45cm^2$ active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the $TiO_2$ layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the $TiO_2$ layer was determined to be an effective method for improving the ECE of a DSSC.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. K. Wongcharee, V. Meeyoo and S. Chavadej, Sol. Energy Mater. Sol. Cells, 91, 566 (2007). https://doi.org/10.1016/j.solmat.2006.11.005
  3. M. Gratzel, J. Photochem. Photobiol. C, 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovolt. Res. Appl., 22, 701 (2014). https://doi.org/10.1002/pip.2525
  5. A. Hagfeldt, G. Boshloo, L. Sun, L. Koo and H. Pettersson, Chem. Rev., 110, 6595 (2010). https://doi.org/10.1021/cr900356p
  6. L. Li, S. Chen, C. Zu, Y. Zhao, N. G. Rudawski and K. J. Ziegler, ACS Appl. Mater. Interfaces, 6, 20978 (2014). https://doi.org/10.1021/am505742y
  7. M. Gratzel, Inorg. Chem., 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  8. S. Lee, J. H. Noh, H. S. Han, D. H. Kim, J. K. Lee, J. Y. Kim, H. S, Jung and K. S. Hong, J. Phys. Chem. C, 113, 7443 (2009).
  9. Y. Yao, G. Li, S. Ciston, R. M. Lueptow and K. A. Gray, Environ. Sci. Technol., 42, 4952 (2008). https://doi.org/10.1021/es800191n
  10. N. G. Park, J. V. Lagemaat and A. J. Frank, J. Phys. Chem. B, 104, 8989 (2000).
  11. J. Bisquert, F. F. Santiago, I. M. Sero, G. G. Belmonte and S. Kimenez, J. Phys. Chem. C, 113, 17278 (2009). https://doi.org/10.1021/jp9037649
  12. H. Xu, X. Tao, D. T. Wang, Y. Z. Zheng and J. F. Chen, Electrochim. Acta, 55, 2280 (2010). https://doi.org/10.1016/j.electacta.2009.11.067
  13. A. Agarwala, M. Kevin, A. S. W. Wong, C. K. N. P, V. Thavasi and G. W. Ho, ACS Appl. Mater. Interfaces, 2, 1844 (2010). https://doi.org/10.1021/am100421e
  14. R. Pater, S. H. Ahn, W. S. Chi and J. H. Kin, Ionics, 18, 395 (2012). https://doi.org/10.1007/s11581-011-0641-4
  15. M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget and J. L. Mieloszunski, Polym. Degrad. Stabil., 79, 271 (2003). https://doi.org/10.1016/S0141-3910(02)00291-4
  16. S. T. Camli, F. Buyukserin, O. Balci and G. G. Budak, J. Colloid Interface Sci., 344, 528 (2010). https://doi.org/10.1016/j.jcis.2010.01.041