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요  약  본 연구에서는, 웨이블릿 노이즈 감쇠에 고속 푸리에 역 변환을 포함하는 방법을 제안한다.  필터링에 인

자를 채용하여 역 필터링을 나타내고, 최 의 계수는 체 평균 제곱 오차를 최소화하도록 선택된다.  필터를 용

하기 해, 손상된 그림에서 원 화상의 워 스펙트럼을 계산한다.  필터링은 역 필터링 처리를 포함하기 때문에 

블링 필터가 반 되지 않을 때 노이즈는 확장한다. 큰 노이즈를 제거하려면 최고의 웨이블릿 임계값을 사용하여 노이

즈를 제거하는 것이다. 웨이블릿 노이즈 감쇠 단계는 역 필터링  웨이블릿 기능으로 노이즈 감소로 구성된다. 실험 

결과는 체 재생 성능 이상의 다른 방법을 능가하지는 않았다.   

Abstract  In this paper, we suggest a approach which comprises fast Fourier transform inversion by wavelet noise 
attenuation. It represents an inverse filtering by adopting a factor into the Wiener filtering, and the optimal factor 
is chosen to minimize the overall mean squared error. in order to apply the Wiener filter, we have to compute the 
power spectrum of original image from the corrupted figure. Since the Wiener filtering contains the inverse filtering 
process, it expands the noise when the blurring filter is not invertible. To remove the large noises, the best is to 
remove the noise using wavelet threshold. Wavelet noise attenuation steps are consisted of inverse filtering and 
noise reduction by Wavelet functions. experimental results have not outperformed the other methods over the 
overall restoration performance.
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Ⅰ. Introduction 

An image is usually corrupted by various noises 

during the image acquisition or transmission. These 

noises decrease the visual analysis and performance. 

The noise reduction process can be described as to 

increase the visual performance while retaining the 

quality of processed image[1]. The traditional algorithms 

to remove the noise from an image use a low or band 

pass filter with several thresholds. These techniques 

can remove a relevant of the noise. But, they are 

incapable if the noises are in the band of the signal to 

be analyzed. Thus, many noise removing techniques 

have been discussed to overcome this problem. The 

signal processing algorithms can be also used for 

images because an image can be considered as a two 

dimensional signal. Therefore, the digital signal 
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processing techniques for a one dimensional signal can 

be adapted to process two dimensional images[2][3].

Wavelet transform has been successfully used in 

many scientific fields such as signal processing, image 

compression, and computer graphics
[4]. On contrary the 

traditional Fourier transform, the Wavelet transform is 

very suitable for the applications of non-stationary 

signals that may instantaneous vary in time
[5-7]. It is 

important to analyze the time-frequency characteristics 

of the signals that had transient signals to represent 

the exact features of such signals
[8-9]. For this reason, 

many researches has been focused on continuous 

Wavelet transform which shows more reliable 

time-scale analysis rather than Fourier transform 

giving a time-frequency analysis. The wavelet 

coefficient is a similarity measure in the frequency 

content between a signal and a chosen wavelet 

function. It is computed as a convolution of the signal 

and the scaled wavelet function, which is regarded as 

a dilated band-pass filter because of its band-pass as 

like spectrum.

The purpose of image restoration is to remove 

defects that degrade an image. Degradation appears in 

many forms such as motion blur, camera out of focus, 

etc. In case of motion blur, it is possible to find very 

good estimates of the actual blurring function and 

reduce the blur to restore the original image. In cases 

where the image is corrupted by noise, the best is to 

compensate for the degradation it caused. The major 

concept of the wavelet noise reduction is to obtain the 

real components of the image from the noisy image. It 

requires the estimation of the noise level. The noise 

level estimation is used to threshold the small 

coefficient regarded as noise. Specifically, discrete 

Wavelet transform based noise removing is consist of 

three levels; decomposition of the image, threshold 

work and reconstruction of the image. Several methods 

use this idea proposed and implements it in different 

ways. When attempting to decrease the influence of 

noise wavelets coefficient, it is possible to do this in 

particular ways, also the need of information of the 

underlying signal leads to different statistical 

treatments of the available information. However, it is 

clear that there is no single optimal wavelet based 

noise removal method. The methods and their 

parameters should be chosen according to the signals 

in hand. 

Curvelet transform can represent edge singularity 

much more efficiently than the traditional wavelet 

transform. It combines multi-scale analysis and 

geometrical concept to achieve the optimal rate of 

convergence by simple threshold techniques. 

Multi-scale decomposition captures point discontinuities 

into linear structures
[10-11]. But a drawback of the linear 

structure is that they are not able to preserve edges in 

a good way. In this paper, we suggest a simple image 

restoration method which involves fast Fourier 

transform inversion by wavelet noise reduction. It does 

the inverse filtering by applying a parameter into the 

Wiener filtering, and the optimal parameter is chosen to 

minimize the overall MSE. The compromise of Wiener 

filter and reasonable inverse filter represents the power 

spectrum of original image. Since the Wavelet 

coefficients of image are better estimates of the power 

spectrum, we substitute the Wavelet transform into the 

order of inverse filtering. The advantage of this 

approach is that we can perform different appropriate 

inverse filtering.

Ⅱ. Wiener Filtering and DFT 

For an original image I, suppose that b is some kind 

of a low pass filter and IB is a blurred image. Then, a 

blurred image can be modeled by 

),(*),(),( jibjiIjiI B = (1)

To get back the original image, we would just have 

to convolve the blurred function with some kind of a 

high pass filter

),(*),(),( jihjiIjiI B= (2)

A problem is to find the high pass filter h. In the real 

case, we would just invert all the elements of b to get 
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a high pass filter. However, notice that a lot of the 

elements in b have values either at zero or very close 

to it. Inverting these elements would give us either 

infinities or some extremely high values. In order to 

avoid these values, we will need to set some sort of a 

threshold on the inverted element. So instead of making 

a full inverse out of b, we can obtain an almost full 

inverse by the following:

⎩
⎨
⎧ <

=
otherwise

jiBjiB
jiH

,
),(/1),,(/1
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δ

δ
(3)

Thus, the higher d we set, the closer H is the full 

inverse filter.

The iterative method is to start a certain initial 

guess of I by using IB and to update that guess after 

every iteration. The method has the following 

equations.
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Here I0 is an initial guess based on I
B. If In is a 

desirable image, In convolved with b will be close to IB. 

The second term in the In+1 equation will disappear and 

In and In+1 will converge. l denotes a convergence factor 

and it determines how fast In and In+1 converge. If both 

of the above equations to the frequency domain are 

taken ,we can get the following.
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Recursively, solving for Fn, it can be shown that

BBF

BBFF
nB

nB
n

/)]1(1[

)]1()1(1[
1+−−=

−++−+=

λ

λλλ L

(6)

Therefore, as n goes to infinity, we can get the 

result as obtained by the inverse filter. In general, this 

method will not give the exact same results as inverse 

filtering, but can be less sensitive to noise in some 

cases.

Image restoration with Wiener filter provides us 

with the optimal trade-off between noise elimination 

and inverse filtering. The inverse filtering is a 

restoration technique for de-convolution, i.e., when the 

image is blurred by a known low pass filter, it is 

possible to recover the image by inverse filtering or 

generalized inverse filtering. However, inverse filter is 

very sensitive to additive noise. The approach of 

reducing degradation at a time allows us to develop a 

restoration algorithm for each type of degradation and 

simply combine them. Wiener filtering executes an 

optimal tradeoff between inverse filtering and noise 

smoothing. It removes the additive noise and inverts 

the blurring simultaneously. The Wiener filtering is 

optimal in terms of the mean square error. It minimizes 

the overall mean square error in the process of inverse 

filtering and noise smoothing. The Wiener filtering is a 

linear estimation of the original image. The approach is 

based on a stochastic framework. The orthogonal 

property implies that the Wiener filter in Fourier 

domain can be expressed as follows: 
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Here Sxx and Snn are power spectra of the original 

image and the noise addition, respectively. H is a 

blurring filter. Wiener filter has two separate parts, an 

inverse filtering part and a noise smoothing part. It not 

only performs the de-convolution by inverse filtering 

but also removes the noise with a compression 

operation (say, low pass filtering).

To implement the Wiener filter, it must be estimated 

the power spectra of the original image and the noise 

addition image. For white additive noise the power 

spectrum is equal to the variance of the noise. To 

estimate the power spectrum of the original image 

many methods can be used. A direct estimate is the 

period-gram estimate of the power spectrum computed 

from the observation:

[ ] 2* /),(),( NlkYlkYS Pyy = (8)

Y(k, l) is DFT of the observation, and the merit of 

this estimate is that it can be implemented very easily 

without the singularity of inverse filtering. Another 

estimate which leads to a cascade implementation of 

the inverse filtering and the noise smoothing is the 

following.
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2||/)( HSSS nnyyxx −= (9)

The power spectrum can be estimated directly from 

the observation using the periodogram estimate. It 

results in a cascade implementation of inverse filtering 

and noise smoothing: 

)/()( HSSSW P
yynn

P
yy −= (10)

The disadvantage of this implementation is that 

when the inverse filter is singular, we have to use the 

generalized inverse filtering. It also suggests the power 

spectrum of the original image can be estimated based 

on a model.

Instead one-dimensional signal that represents the 

changes of amplitude in time, we apply with 

two-dimensional signals which represent the intensity 

variations in space. These signals have the form of 

images. Because the signals are discrete, we use an 

analog of the one dimensional DFT for two dimensional 

signals. It is the following pair of transforms:
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Here, the M  ́ N image has the M  ́ N set of Fourier 

coefficients. The two dimensional DFT is divided into 

two one dimensional DFT which can be done with FFT 

algorithm. 
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The DFT coefficients by the above equation are 

arranged in an intuitive way as Fig 1.

그림 1. DFT 계수의 직관적 표현
Fig. 1. Intuitive representation of DFT coefficients

It is very intuitive to have low frequency in the 

center of the image and high frequency on the outsides 

of the image. According to the frequency periodicity 

and the DFT over any period of the image, we can 

modify the frequency representation by interchanging 

the 1
st and 3rd quadrants and 2nd and 4th quadrants(see 

Fig 2.).

그림 2. DFT 계수의 보다 직관적 표현
Fig. 2. More intuitive representation of DFT 
        coefficients

Because the usual image has slowly varying 

features as opposed to irregular intensity change, this 

positions the majority of the component around the 

center of frequency spectrum. It also means that some 

properties held, and gives some relations between the 

spatial and frequency domain. 

As with the one dimensional DFT, there are many 

properties of the transformation that give insight into 

the components of the frequency domain representation 

of an image and allow us to manipulate the images in 

one domain or the other. First, there is a simple relation 

that can be derived for shifting an image in one domain 

or the other. Since both the space and frequency 

domains are regarded as periodic, shifting means 

rotating around the boundaries. Shifting the scaled 

pulse to the upper left-hand corner shifts the phase 

along the diagonal direction while leaving the 

magnitude untouched. Next, in one-dimensional 

domain, shrinking raises expansion in the other 

direction for the two-dimensional DFT. It notes that as 

a figure grows in an image, the corresponding features 

in the frequency domain are expanded. Finally, rotation 

is a property of the two-dimensional DFT. Because of 

the separation of transformed equations, the frequency 
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components are positioned based on the location of the 

figure in the spatial domain. It notes that rotating the 

spatial contents rotates the frequency contents.

Before the image filtering, it must be examined what 

the frequency components of image is. In a time-based 

signal, a low frequency is one that changes slowly, 

whereas a high frequency represents a more rapid 

change. To extend this idea to a spatial signal, it is 

easy to see that low-frequency data occurs where 

intensity values change slowly. According to these 

concepts, we can now anticipate the results of filtering 

an image. Trying to use a low-pass filter in the Y 

direction, two facts are appeared. First, an ideal filter 

cannot be used because it creates ringing figures, the 

same as in a one-dimensional transform. The second 

and more important realization is that a filter varying 

only in the Y frequency direction, and equal across all 

X, has its effects only in the Y direction of the image. 

It can be expected from the rotation property, and from 

this we can compute, properly it turns out, that a filter 

is just as separable as the transform, and therefore a 

filter direction is its effect one. Notice the way the 

shadows ripple up and down from horizontal lines in 

the source image, whereas vertical lines are unaffected.

Ⅲ. Compromise between noising and 

inverse filtering

Wiener filtering is the optimal tradeoff of inverse 

filtering and noise smoothing. However, in the case 

when the blurring filter is singular, it really extends the 

noise. So, a noise removing step is required to reduce 

the diffusion noise. Wavelet-based denoising is a 

natural technique for this purpose. The image 

restoration contains two separate steps: 

Fourier-domain inverse filtering and wavelet-domain 

image without noising (see Fig 3.).

그림 3. 두 단계의 이미지 복원
Fig. 3. Image restoration with two steps

Wavelet-based denoising for image restoration 

improves the performance. However, in the case when 

the blurring function is not invertible, the algorithm is 

not applicable. Furthermore, since the two steps are 

separate, there is no handling over the total 

performance of the restoration. A wavelet-based 

deconvolution method can be used for this problem. 

The idea is to apply both Fourier-domain Wiener-like 

and wavelet-domain regularization. The regularized 

inverse filter is to modify the Wiener filter with a new 

regular parameter as the following.

( ) )|/(|* 2
nnxxxx SSHSHG αα += (13)

The parameter a can be selected to minimize the 

total mean-square error (see Fig 4.).

그림 4. 정규화 역을 이용한 이미지 복원
Fig. 4. Image restoration using regularized inverse

The regular inverse filter involves the power 

spectrum of original image. Since wavelet transform 

has good independent property, the wavelet coefficients 

of image can have better probability model, and the 

power spectrum can be better estimated. It suggests a 

new approach changing the order of regular inverse 

filtering and the wavelet transform (see Fig 5.).

그림 5. 일반적인 역 필터와 웨이블릿 변환
Fig. 5. Regular inverse filter and wavelet transform
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Both inverse filtering and noise smoothing can be 

performed in wavelet domain. Specifically, the image 

power spectrum in a same sub-band can be computed 

under the condition that the wavelet coefficients are not 

dependent. So, the power spectrum is just the variance 

of the wavelet coefficients. Trade-off of the inverse 

filtering and the wavelet transform is only valid in case 

that continuous wavelet transform is used and the 

blurring function is separable. We can substitute the 

wavelet transform into the order of the blurring 

operation. It means that the inverse filtering suppresses 

the blurring in the wavelet domain. Thus, the result by 

wavelet threshold becomes a reasonable estimate (see 

Fig 6.).

그림 6. 합리적인 변환
Fig. 6. A reasonable transform

After loading the input image, the calculations for 

the local adaptive image de-noising are done by a 

Wavelet de-noising function. This function calls 

several sub functions. The implementation can be 

summarized as the following.

The signal variance of a coefficient is computed 

using neighboring coefficients in a rectangular area 

with the window size. Also, set how many steps are 

used for the wavelet transform.

The noisy image is extended using symmetric 

extension to reduce the boundary problem with a 

symmetric extended function. Perform the forward 

wavelet transform. 

Compute the noise variance. The noise variance is 

calculated using the robust median estimator. 

The coefficient and the corresponding parent nodes 

are prepared for each sub-band, and the parent node is 

expanded using the diffusion function to make the node 

size the same as the coefficient node. 

Estimate the signal variance and threshold value: 

The signal variance for each coefficient is estimated 

using the window size, and the threshold value for each 

coefficient is calculated and stored in a node with the 

same size as the coefficient node. 

The coefficients are estimated using the noisy 

coefficient, its parent, and the estimated threshold value 

with the bi-shrink function. Finally, calculate the 

inverse wavelet transform, and extract the image.

Finally, we suggest a simple technique for 

estimating h based on degraded image. To this point, 

we have discussed some restoration techniques, when 

we knew the blurring function h. Also, we have 

assumed that we knew the image spectrum Suu and 

spectrum noise Snn as well. Two restoration filters are 

the basis for the above algorithm. One is the Wiener 

Filter, which exhibits the better property in the MSE 

sense between inverse filtering and noise smoothing. 

Another filter is to restore the power spectrum of 

degraded image. It is similar to the power spectrum 

equalization. Our degradation model is assumed that 

the input image is blurred through convolution with a 

low pass filter h and then Gaussian noise is added. 

Moreover, because the power spectrum equalization 

works best assuming the low-pass filter is without 

phases, we generate a low pass filter to have zero 

phases. Let's begin by introducing the Wiener filter. 

  ( ) )|/(|* 2
nnxxxx SSHSHG += (14)

Here, H is the Fourier Transform of low pass filter 

h, and Sxx and Snn are defined as above. This 

degradation model is the same as a convolution plus 

noise. In the frequency domain, convolution becomes 

multiplication. If the noise addition is ignored, it can be 

taken the log of the multiplication and got addition. 

Thus, the log Fourier transform of degraded image Id  

is equal to the log Fourier transform of the original 

image Io plus the log of transfer function H. We can 

use a statistical estimation to obtain H and thus solve 

for Io. The problem with this procedure is in fact that 



The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)

Vol. 16, No. 2, pp.113-122, Apr. 30, 2016. pISSN 2289-0238, eISSN 2289-0246

- 119 -

the noise can be not ignored. Therefore, it is required 

ways to estimate the log multiplication of Io and H plus 

the noise spectrum. Let Uk and Vk be obtained by 

breaking the input image and degraded image into M 

smaller blocks and computing their Fourier 

Transforms. Then, an estimate of H can be obtained 

from Jain text as the followings.

( )∑
=

=
M

k
kk UV

M
H

1

||/||ln1||ln
(15)

The above estimate for H can be approximated by 

using normal vectors as the following.
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Then, H is used with Snn and Sxx to compute the 

Wiener Filter. Notice that this method only computes 

Magnitude of H, so it is optimal in case of without 

phase filters. This is necessary condition about our 

filter design of a phase free h. 

Ⅳ. Application

In this section, we show some implementation and 

results by typical restoration methods, and compare the 

proposed method with them. Before an inverse filter 

was applied, we had to threshold B. 
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Here n is set arbitrarily close to zero for noiseless 

cases. The following image shows the results for n=0.2. 

The MSE for the restored image is 2337.3 (See Fig 7. 

(c)). We can see that the restoration image has a lot of 

noise specs. The image is not closely like the original. 

Because an inverse filter is a high pass filter, it does 

not perform well in the presence of noise. Usually, the 

MSE for the restored image is very large. We can 

improve the many specs by increasing n. In general, 

the more noise we have in the image, the higher we set 

n. The higher the n, the less high pass the filter is 

which means that it extends noise less. In the iterative 

method, the first thing to do is to pick a parameter (l). 

It must satisfy the following condition:. The bigger l is 

the faster and will converge. However, picking too 

large a parameter may also make and diverge. The 

following image is noise free after 1500 iterations.

The images are usually listed with PSNR (peak 

signal-to-noise ratio) and MSE. The restored image is 

improved in terms of the visual performance, but MSE 

does not indicate this, the major reason is that MSE is 

not a good metric for de-convolution (see Fig 7. (d)). 

The parameter starts off at 0.1 and decreases by 10%, 

every fifty iterations. The MSE is 645.9822. But, the 

image is sharper than the blurred image although the 

MSE is more or less high. 

(a) Original image (PSNR = 

Infinity, MSE = Zero)

(b) Blurred image (PSNR = 

19.9778, MSE = 643.3681)

(c) Restoration by     inverse 

filter(PSNR = 14.375, MSE = 

2.337e+3

(d) Image after iterative 

restoration (PSNR   = 

19.9602,MSE = 645.9822)

그림 7. 반복적인 방법으로 복원
Fig. 7. Restoration by the iterative method

To apply the Wiener filtering in image restoration, 

we used the standard 512  ́ 512 Lena test image. We 

blur the image with the low pass filter as the following.

Then, we put into the blurred image the additive 

white Gaussian noise of variance 100 (see Fig 8.). The 

Wiener filtering is applied to the original image with a 

cascade implementation of the noise smoothing and 

inverse filtering. The images are listed as the Fig 8. 

with the PSNR and MSE. Notice that the restored 

image is improved in terms of the visual performance, 

but the MSEs don't indicate this, the reason of which 
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is that MSE is not a reasonable measure for 

deconvolution.

For the Wavelet based image restoration, we applied 

Daubechies tap 8 wavelet transform to the corrupted 

image (see Fig 9.(a)). According to the visual 

performance and the mean square error, the algorithm 

improved a little the restoration performance (see Fig 

9.(b)). However, the noise reduction step uses wavelet 

threshold technique to remove the noises, the image are 

blurred a little bit again, even though the MSE is 

improved.

(a) Original image (PSNR = 

Infinity, MSE = Zero)

(b) Blurred image (PSNR = 

19.3030, MSE = 745.5082)

(c) Restoration by generalized 

inverse filtering (PSNR= 

21.6202, MSE= 596.6344)

(d) Restoration by generalized 

Wiener filtering (PSNR= 

21.8333,MSE= 385.5513)

그림 8. 일반적인 위너 필터링으로 이미지 복원
Fig. 8. Image restoration by the generalized 
        Wiener filtering

(a) Blurred   image (PSNR = 

19.3495,   MSE = 743.5146)

(b) Wavelet restoration 

(PSNR = 22.2616, MSE 

=380.2645)

그림 9. 블릿 변환을 통한 이미지 복원
Fig. 9. Image restoration by Wavelet transform

Finally, we examined the effectiveness of power 

spectral substitution. Note the similarity to Wiener 

Filtering, but we only used the magnitude of H. In 

general, the power spectrum equalization is not very 

robust because an exact representation of the noise is 

used. This is because the power spectrum equalization 

does not use inverse filtering, so the noise estimation 

is doubly important. Sxx is estimated as the magnitude 

squared of the Fourier Transform of the input image. 

Many blocks are due to the compression we used on 

the figure to store the images. 

(a) Power spectral density of 

original image

(b) Power   spectral density 

of noise image

(c) Power spectral density of 

denoised image

(d) restoration 

(PSNR=28.641, MSE=87.523)

그림 10. 성능이 저하된 이미지 복원
Fig. 10. Restoration of degraded image

The important things are the much reduction of 

MSE in Fig 10. (MSE of degraded image: 743.5146, 

MSE of restored image through Wiener filtering: 

385.5513, MSE of restored image by suggested method: 

87.5233). In general, the blurriness of the degraded 

image has been removed. 

Ⅴ. Conclusions

Inverse filtering is a very easy and accurate way to 
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restore an image provided that we know what the 

blurring filter is and that we have no noise. Because an 

inverse filter is a high pass filter, it tends to extend 

noise as was presented in our experiments. The inverse 

filtering with an iterative procedure is more or less an 

averaging method. It deals a little better with noise by 

averaging it out. But both methods do not deal well 

with noise. Thus, we used some method of restoration 

which would trade off inverse filtering with de-noising. 

Wiener filtering gives the optimal result between the 

inverse filtering and noise smoothing. It can be 

interpreted as an inverse filtering step followed by a 

noise attenuation step. However, to implement the 

Wiener filter we have to estimate the power spectrum 

of the original image from the corrupted observation. 

Since the Wiener filtering contains the inverse filtering 

step, it expands the noise when the blurring filter is not 

invertible. More importantly, the expanded noise is not 

attended. To remove the large noises, the best is to 

remove the noise using wavelet threshold. Wavelet 

noise elimination contains two separate steps, inverse 

filtering and wavelet de-noise. It has not control over 

the overall restoration performance. One new approach 

comprises FFT inversion by wavelet noise suppression. 

It uses the inverse filtering by introducing a parameter 

into the Wiener filtering, and the optimal substitution 

factor is chosen to minimize the overall MSE. The 

implementation of the Wiener filtering and inverse 

filtering order includes the estimation of the power 

spectrum of the original image as a new wavelet-based 

restoration. Since the wavelet coefficients of image are 

corresponding to estimate the power spectrum, we 

substituted the Wavelet transform into the order of 

inverse filtering. The methods we demonstrated all 

used zero phase degradation filters. Most methods that 

estimate phase are almost tricky.
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