DOI QR코드

DOI QR Code

Development of Stochastic Decision Model for Estimation of Optimal In-depth Inspection Period of Harbor Structures

항만 구조물의 최적 정밀점검 시기 추정을 위한 추계학적 결정모형의 개발

  • Lee, Cheol-Eung (Department of Civil Engineering, Kangwon National University)
  • Received : 2016.02.11
  • Accepted : 2016.03.25
  • Published : 2016.04.30

Abstract

An expected-discounted cost model based on RRP(Renewal Reward Process), referred to as a stochastic decision model, has been developed to estimate the optimal period of in-depth inspection which is one of critical issues in the life-cycle maintenance management of harbor structures such as rubble-mound breakwaters. A mathematical model, which is a function of the probability distribution of the service-life, has been formulated by simultaneously adopting PIM(Periodic Inspection and Maintenance) and CBIM(Condition-Based Inspection and Maintenance) policies so as to resolve limitations of other models, also all the costs in the model associated with monitoring and repair have been discounted with time. From both an analytical solution derived in this paper under the condition in which a failure rate function is a constant and the sensitivity analyses for the variety of different distribution functions and conditions, it has been confirmed that the present solution is more versatile than the existing solution suggested in a very simplified setting. Additionally, even in that case which the probability distribution of the service-life is estimated through the stochastic process, the present model is of course also well suited to interpret the nonlinearity of deterioration process. In particular, a MCS(Monte-Carlo Simulation)-based sample path method has been used to evaluate the parameters of a damage intensity function in stochastic process. Finally, the present stochastic decision model can satisfactorily be applied to armor units of rubble mound breakwaters. The optimal periods of in-depth inspection of rubble-mound breakwaters can be determined by minimizing the expected total cost rate with respect to the behavioral feature of damage process, the level of serviceability limit, and the consequence of that structure.

경사제 피복재와 같은 항만 구조물의 유지관리 계획에서 중요한 최적 정밀점검시기를 쉽게 결정할 수 있는 RRP(Renewal Reward Process)기반 기대할인비용모형인 추계학적 결정모형을 개발하였다. PIM(Periodic Inspection and Maintenance)과 CBIM(Condition-Based Inspection and Maintenance) 정책을 동시에 적용하여 이전 모형들의 한계성을 극복할 수 있는 수학적 모형을 수립하였다. 또한 모형에 연속복리계수를 도입하여 점검 및 보수보강과 관련된 비용들의 시간에 따른 가치변화를 고려하였다. 먼저 파괴율 함수가 일정한 조건에서 해석해를 유도하고, 분포함수에 따른 영향 등 다각적 민감도 분석을 수행하여 본 연구에서 유도된 해석해가 기존에 제시된 해석해를 포함하며 적용성이 더 우수함을 확인 할 수 있었다. 추계학적 확률과정을 이용하는 경우에도 본 연구에서 수립된 모형은 경사제 피복재와 같은 구조물의 추계학적 누적피해도의 비선형성을 올바로 해석할 수 있다. 특히 MCS(Monte-Carlo Simulation) 기반 표본경로기법을 사용하여 모형의 피해강도함수의 계수들을 비교적 쉽게 산정할 수 있었다. 마지막으로 본 연구에서 개발된 추계학적 결정 모형을 경사제 피복재에 만족스럽게 적용하였다. 누적피해의 거동 특성, 사용한계의 수준 그리고 구조물의 중요도에 따라 단위시간당 기대 총 비용이 최소가 되는 경사제의 피복재의 최적 정밀점검 시점을 비교적 쉽게 결정할 수 있었다.

Keywords

References

  1. Barlow, R.E., and Proschan, F. (1965). Mathematical theory of reliability, New York, NY., John Wiley & Sons.
  2. Burcharth, H.F. (1992) Reliability evaluation of a structure at sea, Short course of 23rd ICCE., 470-517.
  3. Castillo, C., Castillo, E., Fernandez-Canteli, A., Molina, R., and Gomez, R. (2012) Stochastic model for damage accumulation in rubble-mound breakwaters based on compatibility conditions and central limit theorem, J. Waterway, Port, Coast., and Ocn. Eng., ASCE, 138(6), 451-463. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000146
  4. Cheng, T., Pandey, M.D., and Van der Weide, J.A.M., (2012). The probability distribution of maintenance cost of a system affected by the gamma process of degradation : finite time solution, Rel. Eng. and Sys. Saf., 108, 65-76. https://doi.org/10.1016/j.ress.2012.06.005
  5. CIRIA. (2007). The rock manual, The use of rock in hydraulic engineering(2nd. ed.) C683, London.
  6. Gassandras, C.G. and Han, Y. (1992). Optimal inspection policies for a manufacturing station, European J. of Op. Res., 63, 35-53. https://doi.org/10.1016/0377-2217(92)90053-C
  7. Goda, Y. (2010) Random seas and design of maritime structures, World Scientific Pub. Co.,
  8. Kahle, W., and Wendt, H. (2004) On a cumulative damage process and resulting first passage times, Appl. Stochastic Models Bus. Ind., 20, 17-26. https://doi.org/10.1002/asmb.511
  9. Kaio, N. and Osaki, S. (1984). Some remarks on optimal inspection policies, IEEE Trans. on Reliability, R-33, 277-279. https://doi.org/10.1109/TR.1984.5221821
  10. Kaio, N. and Osaki, S. (1986). Optimal inspection policy with two types of imperfect inspection probabilities, Micro-elect. and Reli., 26, 935-942. https://doi.org/10.1016/0026-2714(86)90236-2
  11. Lee, C.-E. (2013). Development of stochastic expected cost model for preventive optimal maintenance of armor units of rubble-mound breakwaters, Journal of the Korean Society of Coastal and Ocean Engineers, 25(5), 276-284. (in Korean). https://doi.org/10.9765/KSCOE.2013.25.5.276
  12. Lee, C.-E. (2015). Estimation of time-dependent damage paths of armors of rubble-mound breakwaters using stochastic processes, Journal of the Korean Society of Coastal and Ocean Engineers, 27(4), 246-257. (in Korean). https://doi.org/10.9765/KSCOE.2015.27.4.246
  13. Melby, J.A. (1999). Damage progression on breakwaters, Ph.D. thesis, Dept. of Civ. Engrg., Univ. of Delware, USA.
  14. Melby, J.A. (2005) Damage development on stone-armored break-waters and revetments, ERDC/CHL CHETN-III-64, US Army Corps of Engineers.
  15. Munford, A.G. and Shahani, A.K. (1972). A nearly optimal inspection policy, Oper. Res. Quarterly, 23, 373-379. https://doi.org/10.1057/jors.1972.56
  16. Munford, A.G. and Shahani, A.K. (1973). An inspection policy for the Weibull case, Oper. Res. Quarterly, 24, 453-458. https://doi.org/10.1057/jors.1973.79
  17. Nakagawa, T. (2005). Maintenance theory of reliability, Springer-Verlag, London.
  18. Nakagawa, T. and Yasui, K. (1979). Approximate calculation of inspection policy with Weibull failure times, IEEE Trans. on reliability, R-28, 403-404. https://doi.org/10.1109/TR.1979.5220658
  19. Noortwijk, J.M. and Frangopol, D.M. (2004). Deterioration and main-tenance models for insuring safety of civil infrastructures at lowest life-cycle cost, Proc. of Life- Cycle Performance of Deteriorating Structures: Assessment, Design and Management, ASCE, 384-391.
  20. Noortwijk, J.M. and Klatter, H.E. (1999). Optimal inspection decisions for the block mats of the Eastern-Scheldt, Rel. Eng. and Sys. Saf., 65, 203-211. https://doi.org/10.1016/S0951-8320(98)00097-0
  21. PIANC (1992). Analysis of rubble mound breakwaters, Supplement to Bull. N. 78/79, Brussels, Belgium.
  22. Ramchandani, P (2009). Stochastic renewal process model for condition-based maintenance, Master thesis, University of Waterloo.
  23. Ross, S.M. (1980). Introduction to probability models, Academic Press, N.Y.
  24. Sandoh, H. and Igaki, N. (2003). Optimal inspection policies for a scale, Comp. and Math. with Applic., 46, 1119-1127. https://doi.org/10.1016/S0898-1221(03)90127-1
  25. Tadikamalla, P.R. (1979). An inspection policy for gamma failure distributions, Naval Re. Log. Quarterly, 25. 243-255.
  26. Thuesen, G.J. and Fabrycky, W.J. (1994). Engineering economy, Prentice-Hall Inc, N.J.
  27. Van der Meer, J.W. (1988). Deterministic and probabilistic design of breakwater armor layers, J. Waterway, Port, Coast., and Ocn. Eng., ASCE, 114(1), 66-80. https://doi.org/10.1061/(ASCE)0733-950X(1988)114:1(66)
  28. Van der Troon, A. (1994). The maintenance of civil engineering structures, Heron Journal, TRB, 39, 3-34.
  29. Van der Weide, J.A.M., Pandey, M.D. (2011). Stochastic analysis of shock process and modelling of condition-based maintenance, Rel. Eng. and Sys. Saf., 96, 619-626. https://doi.org/10.1016/j.ress.2010.12.012
  30. Wattanapanom, N. and Shaw, L. (1979). Optimal inspection schedules for failure detection in a model where tests hasten failures, Oper. Res., 27, 303-317. https://doi.org/10.1287/opre.27.2.303
  31. Yum, B.J. and MxDowell, E.D. (1987). Optimal inspection policies in a serial production system including scarp rework and repair: A MILD approach, Int. J. of Prod. Res. 25, 1451-1464. https://doi.org/10.1080/00207548708919925
  32. Zacks, S. and Fenske, W.J. (1973). Sequential determination of inspection epochs for reliability system with general lifetime distributions, Naval Res. Log. Quarterly, 20. 377-386. https://doi.org/10.1002/nav.3800200302