DOI QR코드

DOI QR Code

Estimation of Chemical Flame Height based on Fuel Consumption in a Fire Field Model

필드모델에서 연료소모에 기초한 화학적 화염높이 산정

  • Received : 2016.03.18
  • Accepted : 2016.04.22
  • Published : 2016.04.30

Abstract

The present study has been conducted to estimate the chemical flame height based on fuel consumption in fire field model. The calculation algorithms based on cumulative fraction of HRRPUL and fuel concentration along the z axis were applied to the results predicted by Fire Dynamics Simulator (FDS) version 6.3.2 and the mean chemical flame height was obtained by time averaging of instantaneous flame height with the algorithms. The mean flame height calculated by fuel concentration was quite well matched with that of cumulative value of HRRPUL within 10% over-prediction. This study contribute to a more detailed understanding of fire behavior and quantitative evaluation of flame height in the computational fire model.

본 연구는 필드모델에서 소모된 연료에 기초하여 화학적 화염높이를 산정하기 위한 방법을 검토하고자 한다. 높이 방향으로 HRRPUL의 누적값과 연료농도에 따른 계산 알고리즘을 FDS 해석결과에 적용하였으며 평균화학적 화염높이는 알고리즘을 적용한 순간화염높이의 시간평균을 통해 산정하였다. 연료농도에 기초한 평균화염높이는 HRRPUL의 누적값에 의해 계산된 화염높이와 10% 이내의 상향예측범위에서 일치된 결과를 보였다. 이러한 연구는 전산화재해석모델에서 정량적인 화염높이를 산정하고 보다 상세한 화재거동특성을 이해하는데 기여하고자 한다.

Keywords

References

  1. B. J. Stratton, "Determining Flame Height and Flame Pulsation Freqency and Estimating Heat Release Rate From 3D Flame Reconstruction", MS Thesis, University of Canterbury (2005).
  2. J. S. Newman and C. J. Wieczorek, "Chemical Flame Heights", Fire Safety Journal, Vol. 39, pp. 375-382 (2004). https://doi.org/10.1016/j.firesaf.2004.02.003
  3. F. El-Mahallawy and S. El-Din Habik, "Fundamentals and Technology of Combustion", Elsvier Science Ltd., Oxford, UK (2002).
  4. E. E. Zukoski, B. M. Ceegen and T. Kubota, "Visible Structure of Buoyant Diffusion Flames", Proceeding of Combustion Institute, Vol. 20. pp. 361-366 (1985).
  5. G. Heskestad, "Luminous Heights of Turbulent Diffusion Flames", Fire Safety Journal, Vol. 5, pp. 103-108 (1983). https://doi.org/10.1016/0379-7112(83)90002-4
  6. W. R. Hawthorne, D. S. Weddell and H. C. Hottel, "Mixing and Combustion in Turbulent Gas Jets", 3rd Symposium on Combustion and Flame and Explosion Phenomena, Williams & Wilkins, pp. 266-288 (1949).
  7. D. R. U. Johansen, "Implementation of Improved EDC Combustion Model in the Open LES Code FDS", Master's thesis in Process Safety, Univ. of Bergen (2011).
  8. R. McDermott, K. McGrattan and J. Floyd, "A Simple Reaction Time Scale for Under-Resolved Fire Dynamics", Proceedings of the 10th International Symposium on Fire Safety Science, pp. 809-820 (2011).
  9. R. W. Wade and J. P. Gore, "Visible and Chemical Flame Height of Acetylene/Air Jet Diffusion", NIST IR 5904, National Institute of Standards and Technology (1996).
  10. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Wenschenk and K. Overholt, "Fire Dynamics Simulator User's Guide", NIST Special Publication 1019, 6th Ed. (2014).
  11. A. Tewarson, "Ch. 4, Generation of Heat and Chemical Compounds in Fires", SFPE Handbook of Fire Protection Engineering, 3rd Ed., pp. 3.82-3.161 (2002).
  12. G. Cox, "Combustion Fundamentals of Fire", Academic Press Inc. (1995).
  13. S. C. Kim, G. H. Ko and S. H. Lee, "On the Reliability of the Computational Fire Model Based on the Yield Rate Concept of Combustion Gases", Journal of Korean Institute of Fire Science and Engineering, Vol. 23, No. 4, pp. 130-136 (2009).