DOI QR코드

DOI QR Code

Influence of Galgeun-tang on Gene Expression in Diet-Induced Obese Mice

갈근탕이 고지방 식이 유발 비만 쥐에서 비만 관련 유전자 발현에 미치는 영향

  • Ye, Sung-Ae (Department of Korean Rehabilitation Medicine, College of Korean Medicine, Gachon University) ;
  • Kim, Ho-Jun (Department of Korean Rehabilitation Medicine, College of Korean Medicine, Dongguk University) ;
  • Ko, Seong-Gyu (Department of Preventive Medicine, College of Korean Medicine, Kyunghee University) ;
  • Song, Yun-Kyung (Department of Korean Rehabilitation Medicine, College of Korean Medicine, Gachon University)
  • 예성애 (가천대학교 한의과대학 한방재활의학과교실) ;
  • 김호준 (동국대학교 한의과대학 한방재활의학교실) ;
  • 고성규 (경희대학교 한의과대학 예방의학교실) ;
  • 송윤경 (가천대학교 한의과대학 한방재활의학과교실)
  • Received : 2016.03.28
  • Accepted : 2016.04.12
  • Published : 2016.04.30

Abstract

Objectives The purpose of this study was to evaluate anti-obesity effect of Galgeuntang (gegentang) and elucidate the effect of it on gene expression related to obesity. Methods The experiments were performed with the use of Diet-Induced Obese mice. They were grouped NC (normal control), HFD (high fat diet control), GGT (Galgeun-tang (gegentang), 700 mg/kg), ORL (Orlistat, 10 mg/kg). GGT was orally administered for 12 weeks. Body weight was measured every week. Real-time PCR was performed to investigate the effect of GGT on gene expression in liver tissue. Results GGT group and ORL group were reduced in body weight compared with HFD. HFD increased $PPAR{\gamma}$, SREBP-1, Leptin, aP2, FATP1, FAS gene expression compared with NC. GGT increased FATP1 gene expression. But GGT reduced $PPAR{\gamma}$ & FAS gene expression in liver tissue of diet-induced obese mice compared with HFD. Conclusions These results suggest that GGT is supposed to have a certain impact on the treatment of obesity. But more study is needed in the future.

Keywords

References

  1. Ministry of Health and Welfare. Korea National Health and Nutrition Examination Survey (KNHANES). 2014.
  2. Faust IM, Johnson PR, Stern JS, Hirsch J. Diet-induced adipocyte number increase in adult rats-new model of obesity. Am J Physiol 1978;235:E279-86.
  3. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85-97. https://doi.org/10.1038/nri2921
  4. Hong CR. Inhibitory effect of Cori fructus ethanolic extracts on adipogenesis in 3T3-L1 preadipocytes. Master's degree. Incheon: Inha University. 2009.
  5. Hwang MJ, Shin HD, Song MY. Literature Review of Herbal Medicines on Treatment of Obesity Since 2000 - Mainly about Ephedra Herba. J Korean Med Obes Res. 2007;7(1):39-54.
  6. Park YS. Herbal Pharmacology Commentary. Seoul: Academy books, 2002:113, 127, 197-202.
  7. Yang TK, Kim YB, Chae BY. An Experimental study on the anti-allergic effects, anti-inflammatory action, anti-pyretic action and analgesic action of Galgeun-tang, Gamigalgeun-tang and Geomahwanggalgeun-tang. J Orient Med Surgery, Ophthalmology & Otolaryngology 2002;15(1):76-95.
  8. Ha HK, Lee JK, Lee MY, Lim HS, Shin HK. Galgeuntang, an Herbal Formula, Ameliorates Atopic Dermatitis esponses in Dust Mite Extract-treated NC/Nga Mice. J Korean Med. 2013;34(4):1-11. https://doi.org/10.13048/jkm.13022
  9. Kim DR, Kwak GS, Jeong SM, Lee SC and Ha. JU. Comparison of the Antioxidative Abilities of Commercial Gal Geun Tang. J. Korean Soc. Food Sci. Nutr. 2003; 32(5):728-32. https://doi.org/10.3746/jkfn.2003.32.5.728
  10. Shin JM. Screening of Antiaging Compound from Galgeuntang and the Roots of Pueraria thunbergiana Benth. Wonkwang University. 2007.
  11. Cho DY. Effect of Gal-Geun-Tang on Antigen-Specific Immune Response. Wonkwang University. 2005.
  12. Kim SB. The effects of proliferation and differentiation on adipocyte 3T3-L1 by prescriptions and herbs of Tae-yang In and Tae-um In. J Sasang Constitut Med. 1998;10(2):533-64.
  13. Shekelle PG, Hardy ML, Morton SC, Maglione M, Mojica WA, Suttorp MJ, et al. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA. 2003;289(12):1537-45. https://doi.org/10.1001/jama.289.12.1470
  14. Song MY, Kim HJ. Analysis of Main Single Medicinal Herbs for Anti-Obesity. J Korean Med Obes Res 2013; 13(2):51-7.
  15. Kang SC, Lee CM, Choi H, Lee JH, Oh JS, Kwak JH, Zee OP. Evaluation of oriental medicinal herbs for estrogenic and antiproliferative activities. Phytother Res. 2006;20 (11):1017-9. https://doi.org/10.1002/ptr.1987
  16. Shin HJ, Yoo JE, Jung EH, Yoo DY. Effects of Pueraria iobata body weight and gene expression in obese rats muscle with estrogen defieiency. J Orient Gynecol. 2012; 25(3):71-84.
  17. Yoon KH, Yoon MC, Kim H, Shin SS. Changes in mRNA Expression of Obesity-related Genes by Gyeongshinhae- Gihwan 1(GGT1) in hGHTg (human growth hormone transgenic) obese Female Rats. Korean J. Oriental Physiology & Pathology 2006;20(2):383-7.
  18. Oh JH, Ahn YJ, Lee HR, Lim HS, Lee HH, Yoon MC, Shin SS. Comparison among GGEx16, GGEx18 and gambitongseong- capsule for anti-obesity gene activity. Kor. J. Herbology 2013;28(2):39-44. https://doi.org/10.6116/KJH.2013.28.2.39
  19. Ryu HJ, Um MY, Ahn JY, Jung CH, Huh D, Kim TW, and Ha TY. Anti-obesity Effect of Hypsizigus marmoreus in High Fat-fed Mice. J Korean Soc Food Sci Nutr 2011;40(12):1708-14. https://doi.org/10.3746/jkfn.2011.40.12.1708
  20. Kim HJ, Hong SY, Heo DS, Yoon IJ, Oh MS. The Inhibitory Effects of Sansayukbokhap- bang (SSYBHB) on the Obese-Mouse Induced High Fat Diet. J Korean Med Obes Res. 2008;8(1):33-49.
  21. Hwang SJ, Song TW, Oh MS. The inhibitory Effects of Bangpungtongseoung-san on the Obese gene and Obese Inhibitory about Obese-mouse induced by High Fat Diet. J Korean Oriental Med 2006;27(1):11-22.
  22. Shekelle PG, Hardy ML, Morton SC, Maglione M, Mojica WA et al. Efficacy and Safety of ephedra and ephedrine for weight loss and arthletic performance: a meta-analysis. JAMA. 2003;289(12):1537-45. https://doi.org/10.1001/jama.289.12.1470
  23. Qi W, Weber CR, Wasland K, Savkovic SD. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity. BMC Cancer. 2011;11(1):219. https://doi.org/10.1186/1471-2407-11-219
  24. Kang SC, Lee CM, Choi H, Lee JH, Oh JS, Kwak JH, Zee OP. Evaluation of oriental medicinal herbs for estrogenic and antiproliferative activities. Phytother Res. 2006; 20(11):1017-9. https://doi.org/10.1002/ptr.1987
  25. Lee KH, Ahn DK, Shin MK, Kim CM. Dictionary of Chinese medicine. Seoul:Jeong Dam Books. 2006:1000, 3081.
  26. Gregoire FM, Smas CM, Sul HS. Understanding Adipocyte Differentiation. Physiol Rev. 1998;78(3):783-809. https://doi.org/10.1152/physrev.1998.78.3.783
  27. run RP, Kim JB, Hu E, Altiok S, Spiegelman BM. Adipocyte differentiation: a transcriptional regulatory. Curr. Opin. Cell. Biol. 1996;826-832.
  28. Gregoire FM, Smas CM. Understanding adipocyte differentiation. Physiol. Rev. 1998; 78:783-809. https://doi.org/10.1152/physrev.1998.78.3.783
  29. Saitoa T, Abea D and Sekiya K. Flavanone exhibits PPAR ${\gamma}$ ligand activity and enhanced differentiation of 3T3-L1 adipocyte. Biochem. Biophys. Res. Commun. 2009;308:281-5.
  30. Tontonoz O, Hu E. and Spiegelman BM. Regulation of adipocyte of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma. Curr. Opin. Genet. Dev. 1995;5:571-6. https://doi.org/10.1016/0959-437X(95)80025-5
  31. El-Jack AK, Hamm JK, Pilch PF, Farmar SR. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPAR gamma and C/EBP alpha. J. Biol. Chem. 1999;274:7946-51. https://doi.org/10.1074/jbc.274.12.7946
  32. Fox KE, Fankell DM, Erickson PF, Maika SM, Crossno JT, Klemm DJ. Depletion of cAMP-response element- binding protein/ATF1 inhibits adipogenic conversion of 3T3-L1 cells ectopically expressing CCAAT. enhancer-binding protein (C/EBP) alpha, C.EBP beta, or PPAR gammar 2. J. Biol. Chem. 2006;286:40341-53.
  33. Hamm JK, Park BH, Farmar SR. A role of C/EBP beta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocyte. J. Biol. Chem. 2001;276:18464-71. https://doi.org/10.1074/jbc.M100797200
  34. Cao Z, Umek RM, McKnight SL. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 1991;5:1538-52. https://doi.org/10.1101/gad.5.9.1538
  35. Long SD, Pekala PH. Lipid mediators of insulin resistance: ceramide signalling down-regulates GLUT4 gene transcription in 3T3-L1 adipocytes. J. Biol. Chem. 1996; 319:179-184.
  36. Spiegelman BM. "PPAR-gamma: adipogenic regulator and hiazolidinedione receptor," Diabetes, 1998;47(4);507-14. https://doi.org/10.2337/diabetes.47.4.507
  37. El-Jack AK, Hamm JK, Pilch PF, Farmar SR. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPAR gamma and C/EBP alpha. J. Biol. Chem. 1999;274:7946-51. https://doi.org/10.1074/jbc.274.12.7946
  38. Fox KE, Fankell DM, Erickson PF, Maika SM, Crossno JT, Klemm DJ. Depletion of cAMP-response elementbinding protein/ATF1 inhibits adipogenic conversion of 3T3-L1 cells ectopically expressing CAAT.enhancer-binding protein (C/EBP) alpha, C.EBP beta, or PPAR gammar 2. J. Biol. Chem. 2006;286:40341-53.
  39. Hamm JK, Park BH, Farmar SR. A role of C/EBP beta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocyte. J. Biol. Chem. 2001;276:18464-71. https://doi.org/10.1074/jbc.M100797200
  40. Lee JJ, Chun CS, Kin JG, Choi BD. Effect of fasting refeeding on rat adipose tissue lipoprotein lipase activity and lipogenesis: Influence of food restriction during refeeding. J. Korean Soc. Food Sci. Nutr. 2000;29:471-8.
  41. O'Brien KD, Gordon D, Deeb S, Ferguson M, Chait A. Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques. J. Clin. Invest. 1992;89:1544-50. https://doi.org/10.1172/JCI115747
  42. Gimeno RE. Fatty acid transport proteins. Curr Opin Lipidol 2007;18:271-6. https://doi.org/10.1097/MOL.0b013e3281338558
  43. Holloway GP, Chou CJ, Lally J, Stellingwerff T, Maher AC, Gavrilova O, Haluzik M, Alkhateeb H, Reitman ML and Bonen A. Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance. Diabetologia 2011;54:1457-67. https://doi.org/10.1007/s00125-011-2114-8
  44. Kim HJ and Lee WJ. Insulin-like Growth Factor-I Induces FATP1 Expression in C2C12 Myotubes. J Life Sci. 2014;24(12):1284-90. https://doi.org/10.5352/JLS.2014.24.12.1284
  45. Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 2009;58(3):550-8. https://doi.org/10.2337/db08-1078
  46. McGarry JD, Brown NF. The mitochondrial carnitine palmitoyl transferase system. From concept to molecular an alysis. Eur J Biochem 1997;15:1-14.
  47. chwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000;404:661-71. https://doi.org/10.1038/35007534
  48. Rosen ED, Walkey CJ, Puigserver P and Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000;14:1293.
  49. Horton JD. Sterol regulatory element-binding proteins : transcriptional activators of lipid synthesis. Biochem. Soc.Trans. 2002;30:1091. https://doi.org/10.1042/bst0301091
  50. Rodriguez-Cantu LN, Gutierrez-Uribe JA, Arriola-Vucovich J, Diaz-De La Garza RI, Fahey JW, Serna-Saldivar SO. Broccoli (Brassica oleracea var. italica) sprouts and extracts rich in glucosinolates and isothiocyanates affect cholesterol metabolism and genes involved in lipid homeostasis in hamsters. J. Agr. Food Chem. 2011;59:1095-103. https://doi.org/10.1021/jf103513w
  51. KIM JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996;10:1096-107. https://doi.org/10.1101/gad.10.9.1096
  52. Horton JD. Sterol regulatory element-binding proteins : transcriptional activators of lipid synthesis. Biochem. Soc. Trans. 2002;30:1091. https://doi.org/10.1042/bst0301091
  53. Endo A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res. 1992;33:1569-82.
  54. Pal S, Ho N, Santos C, Dubois P, Mamo J, Croft K, Allister E. Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J. Nutr. 2003;133: 700-6. https://doi.org/10.1093/jn/133.3.700
  55. Agheli N, Kabir M, Berni-Canani S, Petitjean E, Boussairi A, Luo J, Bornet F, Slama G, Rizkalla SW. Plasma lipids and fatty acid synthase activity are regulated by short-chain fructo-oligosaccharides in sucrose-fed insulin- resistant rats. J. Nutr. 1998;128:1283-8. https://doi.org/10.1093/jn/128.8.1283
  56. Shimano H. SREBPs: Physiology and pathophysiology of the SREBP family. FEBS J. 2009;276:616-21. https://doi.org/10.1111/j.1742-4658.2008.06806.x
  57. Park SJ, Lee IS, Lee SP, Yu MH. Inhibition of adipocyte differentiation and adipogenesis by supercritical fluid extracts and marc from Cinnamomum verum. J Life Sci 2013;23:510-7. https://doi.org/10.5352/JLS.2013.23.4.510