DOI QR코드

DOI QR Code

Estimation of Time Difference Using Cross-Correlation in Underwater Environment

수중 환경에서 상호상관을 이용한 시간차이 추정

  • Lee, Young-Pil (Redone Technology) ;
  • Moon, Yong Seon (Department of Electronic Engineering, Sunchon University) ;
  • Ko, Nak Yong (Department of Control, Instrument and Robot Engineering, Chosun University) ;
  • Choi, Hyun-Taek (Korea Research Institute of Ships and Ocean Engineering(KRISO), KIOST) ;
  • Lee, Jeong-Gu (Korea Institute of Science and Technology Information) ;
  • Bae, Young-Chul (Division of Electrical.Electronic Communication and Computer Engineering, Chonnam National University)
  • 이영필 (레드원테크놀러지) ;
  • 문용선 (순천대학교 전자공학과) ;
  • 고낙용 (조선대학교 제어계측로봇공학과) ;
  • 최현택 (한국해양과학기술원부설선박해양플랜트연구소) ;
  • 이정구 (한국과학기술정보연구원) ;
  • 배영철 (전남대학교 전기.전자통신.컴퓨터공학부)
  • Received : 2016.02.26
  • Accepted : 2016.04.22
  • Published : 2016.04.30

Abstract

Recently, underwater acoustic communication (UWAC) has been studied by many scholars and researchers. In order to use UWAC, we need to estimate time difference between the two signals in underwater environment. Typically, there are major three methods to estimate the time-difference between the two signals such as estimating the arrival time of the first non-background segment and calculate the temporal difference, calculating the cross-correlation between the two signal to infer the time-lagged, and estimating the phase delay to infer the time difference. In this paper, we present calculating the cross-correlation between the two signals to infer the time-lagged to apply UWAC. We also present the experimental result of estimating the arrival time by using cross-correlation. We get EXCORR = 0.003055 second as the estimation error in mean absolute difference.

최근에 수중 음향통신에 대한 연구가 많은 연구자들에 의해 연구되어왔다. 수중 환경 UWAC를 사용하기 위해서는 두 신호들 사이의 시간차이를 추정하는 것이 필요하다. 일반적으로 두 신호 시아의 시간차이를 추정하는 기법으로는 배경 영역이 없는 시간을 추정하여 시간 차이를 추정하는 기법, 시간을 추정하여 두 신호 사이의 상호 상관을 추정하는 기법, 시간 차이 추정을 위한 위상지연을 추정하는 기법이 주로 사용된다. 본 논문에서는 UWAC에 적용하기 위하여 시간 지연 추정에 의한 두 신호 사이의 상호상관을 계산하고 이 상호 상관을 이용한 도착 시간의 추정 결과를 0.003055 초가 됨을 보인다.

Keywords

References

  1. A. Ranjan, "Underwater wireless communication network," Advance in Electronic and Electric Engineering, Vol. 3, No.1, pp. 41-46, 2013.
  2. H. W. Kang and W.O. Han, "Performance analysis of variable rate multi-carrier CDMA under an underwater acoustic," Journal of the Korea Institute of Electronics Communications Sciences, Vol. 7, No. 1, pp. 33-38, 2012.
  3. Y. P. Lee, Y. S. Moon, N. Y. Ko, H.T. Choi, L. Huang, and Y. C. Bae, "Measurement of DS-CDMA propagation distance in underwater acoustic communication considering attenuation and noise," International Journal of Fuzzy Logic and Intelligent Systems, Vol.15, No.1, pp.20-26, 2015. https://doi.org/10.5391/IJFIS.2015.15.1.20
  4. Y. P. Lee, Y. S. Moon, N. Y. Ko, H. T. Choi, L. Huang, and Y. C. Bae, "DSSS-based channel access technique DS-CDMA for underwater acoustic transmission," International Journal of Fuzzy Logic and Intelligent Systems, Vol.15, No.1, pp. 53-59, 2015. https://doi.org/10.5391/IJFIS.2015.15.1.53
  5. P. J. Gendron, "Orthogonal frequency division multiplexing with on-off keying: Noncoherent performance bounds, receiver design and experimental results," U.S. Navy Journal of Underwater Acoustics, Vol. 56, No. 2, pp. 267-300, 2006.
  6. M. Stojanovic, "Low complexity OFDM detector for underwater channels," in Proceedings of MTS/IEEE OCEANS Conference, Boston: MA, pp. 18-21, Sept. 2006.
  7. Y. W. Im and H. W. Kang, "Performance analysis of an adaptive OFDM over an underwater acoustic channel," Journal of the Korea Institute of Electronics Communications Sciences, Vol. 5, No. 5, pp. 509-515, 2010.
  8. B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, "Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts," IEEE Journal of Oceanic Engineering, Vol. 33, No. 2, pp. 198-209, Apr. 2008. https://doi.org/10.1109/JOE.2008.920471
  9. Y. Labrador, Masoumeh Karimi, Deng Pan, and Jerry Miller, "Modulation and Error Correction in the Underwater Acoustic Communication Channel," International J. of Computer Science and Network Security, Vol. 9, No.7, pp. 123-130, July 2009.
  10. D. H. Lee and Y. M. Yang, "Two-dimensional localization problem under non-Gaussian noise in underwater acoustic sensor networks," Journal of the Korean Institute of Intelligent Systems, Vol. 23, No.5, pp. 418-422, 2013. https://doi.org/10.5391/JKIIS.2013.23.5.418
  11. S. H. Noh, N. Y. Ko and H. T. Choi, "Implementation and performance comparison for an underwater robot localization methods using seabed terrain information", Journal of the Korean Institute of Intelligent Systems, Vol. 25, No.1, pp.70-77, 2015. https://doi.org/10.5391/JKIIS.2015.25.1.070
  12. H. S. Son, J. B. Park, and Y. H. Joo, "Intelligent range decision method for figure of merit of sonar equation," Journal of the Korean Institute of Intelligent Systems, Vol. 23, No .4, pp. 304-309, 2013. https://doi.org/10.5391/JKIIS.2013.23.4.304
  13. D. J. Shin, S. Y. Na, and J. Y. Kim, "Fuzzy distance estimation for a fish robot," International Journal of Fuzzy Logic and Intelligent Systems, Vol.5, No.4, pp. 316-321, 2005. https://doi.org/10.5391/IJFIS.2005.5.4.316
  14. Y. W. Im, P. S. Lim, J. G. Lee, and C. S. Kim, "Interface effect analysis between undersea fiber optic cable and underwater acoustic channel," Journal of the Korea Institute of Electronics Communications Sciences, Vol. 10, No. 9, pp. 979-986, 2015. https://doi.org/10.13067/JKIECS.2015.10.9.979