DOI QR코드

DOI QR Code

알칼리 활성화 슬래그 시멘트의 특성에 미치는 Al2O3의 영향

The Influence of Al2O3 on the Properties of Alkali-Activated Slag Cement

  • 김태완 (부산대학교 공과대학 건설융합학부 토목공학전공) ;
  • 강충현 (부산대학교 지진방재연구센터)
  • Kim, Tae-Wan (Dept. of Civil Engineering, College of Engineering, Pusan National University) ;
  • Kang, Choong-Hyun (Seismic Simulation Test Center, Pusan National University)
  • 투고 : 2015.09.14
  • 심사 : 2015.12.07
  • 발행 : 2016.04.30

초록

본 연구는 고로슬래그 미분말(GGBFS)의 구성성분이 알칼리 활성화 슬래그 시멘트(AASC)에 미치는 영향에 관한 연구이다. 산화알루미늄($Al_2O_3$)을 고로슬래그 미분말 중량에 대해 2~16% 혼합하였다. 활성화제는 KOH를 사용하였고, 물-결합재 비는 0.5이다. 강도 향상은 $Al_2O_3$ 혼합률이 증가함에 따라 수화반응의 향상으로 나타난다. 재령 28일에서 가장 높은 강도는 2M KOH + 16% $Al_2O_3$와 4M KOH + 16% $Al_2O_3$일 때이고 각각 30.8 MPa과 45.2 MPa이였다. 재령 28일에서 2M KOH + 16% $Al_2O_3$의 강도는 2M KOH ($Al_2O_3$ 미첨가) 보다 46% 향상되었다. 또한 4M KOH + 16% $Al_2O_3$의 강도는 4M KOH ($Al_2O_3$ 미첨가) 보다 44% 향상되었다. 결합재에서 $Al_2O_3$ 혼합률이 증가함에 따라 모든 재령에서 강도가 증가하였다. AASC에서 초음파속도(UPV)는 강도와 유사한 경향을 나타내었지만 흡수율과 공극률은 $Al_2O_3$의 혼합률이 증가함에 따라 강도경향과 상반된 경향을 나타내었다. $Al_2O_3$ 혼합률이 높은 시험체에서 반응생성물질의 Al/Ca와 Al/Si가 증가하였다. SEM과 EDX 분석을 통해 $Al_2O_3$의 혼합은 더욱 치밀한 미세조직을 형성한 것을 확인하였다.

This research investigates the influence of ground granulated blast furnace slag (GGBFS) composition on the alkali-activated slag cement (AASC). Aluminum oxide ($Al_2O_3$) was added to GGBFS binder between 2% and 16% by weight. The alkaline activators KOH (potassium hydroxide) was used and the water to binder ratio of 0.50. The strength development results indicate that increasing the amount of $Al_2O_3$ enhanced hydration. The 2M KOH + 16% $Al_2O_3$ and 4M KOH + 16% $Al_2O_3$ specimens had the highest strength, with an average of 30.8 MPa and 45.2 MPa, after curing for 28days. The strength at 28days of 2M KOH + 16% $Al_2O_3$ was 46% higher than that of 2M KOH (without $Al_2O_3$). Also, the strength at 28days of 4M KOH + 16% $Al_2O_3$ was 44% higher than that of 4M KOH (without $Al_2O_3$). Increase the $Al_2O_3$ contents of the binder results in the strength development at all curing ages. The incorporation of AASC tended to increases the ultrasonic pulse velocity (UPV) due to the similar effects of strength, but increasing the amount of $Al_2O_3$ adversely decreases the water absorption and porosity. Higher addition of $Al_2O_3$ in the specimens increases the Al/Ca and Al/Si in the hydrated products. SEM and EDX analyses show that the formation of much denser microstructures with $Al_2O_3$ addition.

키워드

참고문헌

  1. Kim, T. W., "The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator", Journal of the Korea Concrete Institute, Vol.24, No.6, 2012, pp.745-752. https://doi.org/10.4334/JKCI.2012.24.6.745
  2. Kim, G. W., Kim, B. J., Yang, K. H., and Song, J. K., "Strength Development of Blended Sodium Alkali-Activated Ground Granulated Blast-Furnace Slag (GGBS) Mortar", Journal of the Korea Concrete Institute, Vol.24, No.2, 2012, pp.137-145. https://doi.org/10.4334/JKCI.2012.24.2.137
  3. Chi, M., "Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkaliactivated slag concrete", Construction and Building Materials, Vol.35, 2012, pp.240-245. https://doi.org/10.1016/j.conbuildmat.2012.04.005
  4. Escalante-Garcia, J. I., Fuentes, F. A., Gorokhovsky, A., Fraire-Luna, P. E., and Mendoza-Suarez, G., "Hydration Products and Reactivity of Blast-Furnace Slag Activated by Various Alkalis", Journal of American Ceramic Society, Vol.86, No.12, 2003, pp.2148-2153. https://doi.org/10.1111/j.1151-2916.2003.tb03623.x
  5. Vladimir Zivica, "Effect of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures", Construction and Building Materials, Vol.21, 2007, pp.1463-1469. https://doi.org/10.1016/j.conbuildmat.2006.07.002
  6. Sun, G. K., Young, J. F., and Kirkpatrick, R. J., "The role of Al in C-S-H: NMR, XRD and compositional results for precipitated samples", Cement and Concrete Research, Vol.36, 2006, pp.18-29. https://doi.org/10.1016/j.cemconres.2005.03.002
  7. Pardal, X., Pochard, I., and Nonat, A., "Experimental study of Si-Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions", Cement and Concrete Research, Vol.39, 2009, pp.637-643. https://doi.org/10.1016/j.cemconres.2009.05.001
  8. L'Hopital, E., Lothenbach, B., Le Saout, G., Kulik, D. A., and Scrivener, K., "Incorporation of aluminium in calciumsilicate- hydrates", Cement and Concrete Research, Vol.75, 2015, pp.91-103. https://doi.org/10.1016/j.cemconres.2015.04.007
  9. Gruskovnjak, A., Lothenbach, B., Winnefeld, F., Figi, R., Ko, S.-C., Adler, M., and Mader, U., "Hydration mechanisms of super sulphated slag cement", Cement and Concrete Research, Vol.38, 2008, pp.983-992. https://doi.org/10.1016/j.cemconres.2008.03.004
  10. Myers, R. J., L'Hopital, E., Provis, J. L., and Lothenbach, B., "Effect of temperature and aluminium on calcium (alumino) silicate hydrate chemistry under equilibrium conditions", Cement and Concrete Research, Vol.68, 2015, pp.83-93. https://doi.org/10.1016/j.cemconres.2014.10.015
  11. Barbhuiya, S., Mukherjee, S., and Nikraz, H., "Effects of nano-$Al_2O_3$ on early-age microstructural properties of cement paste", Construction and Building Materials, Vol.52, 2014, pp.189-193. https://doi.org/10.1016/j.conbuildmat.2013.11.010
  12. Lin, K. L., Wang, K. S., Tzeng, B. Y., Wang, N. F., and Lin, C. Y., "Effects of $Al_2O_3$ on the hydration activity of municipal solid waste incinerator fly ash slag", Cement and Concrete Research, Vol.34, 2004, pp.587-592. https://doi.org/10.1016/j.cemconres.2003.09.015
  13. Sakulich, A. R., Anderson, E., Schauer, C. L., and Barsoum, M. W., "Influence of Si:Al ratio on the microstructural and mechanical properties of a fine-limestone aggregate alkaliactivated slag concrete", Materials and Structures, Vol.43, 2010, pp.1025-1035. https://doi.org/10.1617/s11527-009-9563-2
  14. Tanzer, R., Buchwald, A., and Stephan, D., "Effect of slag chemistry on the hydration of alkali-activated blast-furnace slag", Materials and Structures, Vol.48, 2015, pp.629-641. https://doi.org/10.1617/s11527-014-0461-x
  15. Haha, M. B., Lothenbach, B., Le Saout, G., and Winnefeld, F., "Influence of slag chemictry on the hydration of alkaliactivated blast-furnace slag-Part II: Effect of $Al_2O_3$", Cement and Concrete Research, Vol.42, 2012, pp.74-83. https://doi.org/10.1016/j.cemconres.2011.08.005
  16. Melo Neto, A. A., Cincotto, M. A., and Repette, W., "Drying and autogenous shrinkage of pastes and mortars with activated slag cement", Cement and Concrete Research, Vol.38, 2008, pp.565-574. https://doi.org/10.1016/j.cemconres.2007.11.002
  17. Cengiz Duran Atis, Cahit Bilim, Ozlem Celik, Okan Karahan, "Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar", Construction and Building Materials, Vol.23, 2009, pp.548-555. https://doi.org/10.1016/j.conbuildmat.2007.10.011
  18. Collins, F., and Sanjayan, J. G., "Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete", Cement and Concrete Research, Vol.30, 2000, pp.1401-1406. https://doi.org/10.1016/S0008-8846(00)00327-6
  19. Ogawa, K., "$C_4A_3S$ hydration, ettringite formation, and its expansion mechanism: II. Microstructural observation of expansion", Cement and Concrete Research, Vol.12, 1982, pp.101-109. https://doi.org/10.1016/0008-8846(82)90104-1
  20. Odler, I., and Colán-Subauste, J., "Investigation on cement expansion associated with ettringite formation", Cement and Concrete Research, Vol.29, 1999, pp.731-735. https://doi.org/10.1016/S0008-8846(99)00048-4
  21. Wang, S. D., and Scrivener, K. L., "Hydration products of alkali activated slag cement", Cement and Concrete Research, Vol.25, 1995, pp.561-571. https://doi.org/10.1016/0008-8846(95)00045-E
  22. Schneider, J., Cincotto, M. A., and Panepucci, H., "29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes", Cement and Concrete Research, Vol.31, 2001, pp.993-1001. https://doi.org/10.1016/S0008-8846(01)00530-0
  23. Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., and Rodriguez, J., "A model for the C-A-S-H gel formed in alkali-activated slag cement", Journal of the European Ceramic Society, Vol.31, 2011, pp.2043-2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036