DOI QR코드

DOI QR Code

Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers

하이브리드 강섬유로 보강된 UHPC의 파괴거동

  • Lim, Woo-Young (Institute of Engineering Research, Seoul National University) ;
  • Hong, Sung-Gul (Dept. of Architecture & Architectural Engineering, Seoul National University)
  • Received : 2015.09.14
  • Accepted : 2015.12.17
  • Published : 2016.04.30

Abstract

In this study, direct tension test for hybrid steel fiber reinforced ultra-high performance concrete (UHPC) containing two different steel fibers with a length of 16 and 19 mm was performed to investigate the fracture behavior of UHPC. Test results showed that crack strength and tensile strength, and fracture energy increased with increasing the fiber volume ratio. Based on the test results, the peak cohesive stress at the crack tip, tensile strength, and fracture energy depending on the fiber volume ratio were proposed. The proposed tensile strength of UHPC was suggested as a function of the fiber volume ratio and compressive strength. The peak cohesive stress at the crack tip and fracture energy were also proposed as a function of the tensile strength. The predicted values were relatively agree well with the test results. Thus, the proposed equations is expected to be applicable to UHPC with a compressive strength of 140~170 MPa and a fiber volume ratio of less than 2%.

이 연구에서는 노치 도입 인장시편을 사용하여 직접인장강도 실험을 통해 UHPC의 파괴거동을 살펴보고, 강섬유 혼입률에 따른 UHPC의 초기균열강도와 인장강도를 제안하였다. 실험결과 UHPC와 초기균열강도와 인장강도, 그리고 파괴에너지 등은 강섬유 혼입률이 증가할수록 증가하는 것으로 나타났다. 균열선단에서의 응집응력은 Barenblatt의 가정을 사용하여 결정되었으며, 이를 토대로 변형경화 현상이 발생하는 강섬유 혼입률이 1% 이상인 UHPC의 최대응집응력을 예측할 수 있는 간편식을 제안하였다. 인장강도는 강섬유 혼입률과 압축강도의 함수로 제안되었으며, 파괴에너지는 인장강도의 함수로 제안되었다. 제안된 간편식들은 실험값과 비교적 잘 일치하였으며, 향후 압축강도가 140~170 MPa이고, 강섬유 혼입률이 2% 이하인 UHPC에 적용가능 할 것으로 판단된다.

Keywords

References

  1. Kang, S. T., "Comparison of Flexural Tensile Strength according to the Presence of Notch and Fiber Content in Ultra High Performance Cementitious Composites", Journal of the Korea Concrete Institute, Vol.24, No.5, 2012, pp.525-533. https://doi.org/10.4334/JKCI.2012.24.5.525
  2. Kang, S. T., and Ryu G. S., "The Effect of Steel-Fiber Contents on the Compressive Stress-Strain Relation of Ultra High Performance Cementitious Composites (UHPCC)", Journal of the Korea Concrete Institute, Vol.23, No.1, 2011, pp.67-75. https://doi.org/10.4334/JKCI.2011.23.1.067
  3. Association Francaise du Genil Civil (AFGC) Betons fibres aultra-hautes performances. Association Francaise du Genil Civil, France, 2013, p.357.
  4. Korea Concrete Institute, Design Recommendations for Ultra-High Performance Concrete K-UHPC, KCI-M-12-003, Korea, 2012, p.66.
  5. Swamy, R. N., Mangat, P. S., and Rao, C. V. S. K., "The Mechanics of Fiber Reinforcement of Cement Matrices," An International Symposium: Fiber Reinforced Concrete, American Concrete Institute, Detroit, USA, 1974, pp.1-28.
  6. Song, P. S. and Hwang, S., "Mechanical Properties of High- Strength Steel Fiber-Reinforced Concrete," Construction and Building Materials, Vol.18, Issue 9, 2004, pp.669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  7. Jeng, F., Lin, M. L., and Yuan, S. C., "Performance of Toughness Indices for Steel Fiber Reinforced Shotcrete", Tunnelling and Underground Space Technology, Vol.17, 2002, pp.69-82. https://doi.org/10.1016/S0886-7798(01)00065-7
  8. Wafa, F. F. and Ashour, S. A., "Mechanical Properties of High-Strength Fiber Reinforced Concrete", ACI Materials Journal, Vol.89, No.5, 1992, pp.449-455.
  9. Chun, H. M. and Kim, Y. I., "Strength Characteristics and Toughness of Steel Fiber-Reinforced High-Strength Concrete", Journal of the Architectural Institute of Korea, Vol.24, No.2, 2004, pp.455-458.
  10. Yoon, E. S. and Park, S. B., "An Experimental Study on the Mechanical Properties and Long-Term Deformations of High- Strength Steel Fiber Reinforced Concrete," Journal of the Korean Society of Civil Engineers, Vol.26, No.2A, 2006, pp.401-409.
  11. Oh, Y. H., "Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked Steel Fibers", Journal of the Korea Concrete Institute, Vol.20, No.4, 2008, pp.531-539. https://doi.org/10.4334/JKCI.2008.20.4.531
  12. Park, S. H., Kim D. J., Ryu, G. S., and Koh, K. T., "Tensile Behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete", Cement & Concrete Composites 34, 2012, pp.172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  13. Olivito, R. S., and Zuccarello, F. A., "An Experimental Study on the Tensile Strength of Steel Fiber Reinforced Concrete", Composites: Part B, 41, 2010, pp.246-255. https://doi.org/10.1016/j.compositesb.2009.12.003
  14. Hassan, A. M. T., Jones, S. W., and Mahmud, G. H., "Experimental Test Methods to Determine the Uniaxial Tensile and Compressive Behaviour of Ultra High Performance Fibre Reinforced Concrete (UHPFRC)", Construction and Building Materials, 37, 2012, pp.874-882. https://doi.org/10.1016/j.conbuildmat.2012.04.030
  15. Visalvanich K., and Naaman, A. E., "Fracture Model for Fiber Reinforced Concrete", ACI Journal, Vol.80, No.2, 1983, pp.128-138.
  16. Bazant, Z. P., and Planas, J., Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton, Florida, USA, 1998, p.616.
  17. Dugdale, D. S., "Yielding of Steel Sheets Containing Slits," Journal of Mechanics and Physics of Solids, Vol.8, 1960, pp.100-104. https://doi.org/10.1016/0022-5096(60)90013-2
  18. Barenblatt, G. I., "The Mathematical Theory of Equilibrium Cracks in Brittle Fracture", Advances in Applied Mechanics, Academic Press, New York, 1962, Vol.7, pp.55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
  19. Hillerborg, A., J Modeer, M., and Petersson, P. -E., "Analysis of Crack Formation and Crack Growth in Concrete by means of Fracture Mechanics and Finite Elements", Cement and Concrete Research, Vol.6, No.6, 1976, pp.773-782. https://doi.org/10.1016/0008-8846(76)90007-7