DOI QR코드

DOI QR Code

U-노치 및 균열을 갖는 보의 응력집중계수 및 응력확대계수

Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam

  • 서보성 (경북대학교 자동차공학부) ;
  • 이광호 (경북대학교 자동차공학부)
  • Seo, Bo Seong (School of Automotive Engineering, Kyungpook Nat'l Univ.) ;
  • Lee, Kwang Ho (School of Automotive Engineering, Kyungpook Nat'l Univ.)
  • 투고 : 2016.02.16
  • 심사 : 2016.03.21
  • 발행 : 2016.05.01

초록

단순보와 외팔보의 U-노치 및 균열에 대한 응력집중계수 및 응력확대계수를 유한요소법 및 광탄성실험에 의해 해석하였다. 해석결과를 사용하여 응력집중계수 및 응력확대계수의 추정 그래프를 얻었다. 노치의 응력집중계수해석을 위하여 무차원 노치 길이 H(시편의 높이)/h=1.1~2, 무차원 틈 간격 r(노치선단의 반경)/h=0.1~0.5로 하였다. 여기서 h=H-c, c=노치길이이다. 해석결과 틈 길이가 증가할수록 그리고 틈 간격이 좁아질수록 응력집중계수는 증가 한다. 응력집중계수는 단순보가 외팔보다 더 크게 나타나나, 실제 일정한 하중과 노치길이 및 틈 간격 하에서 최대 응력값은 단순보보다 외팔보에서 크게 발생함을 알 수 있었다. 균열해석을 위하여 무차원 균열길이 a(균열길이)/H=0.2~0.5로 하였다. 균열의 길이가 증가 할수록 무차원 응력확대계수는 증가한다. 일정한 하중과 일정한 균열길이하에 응력확대계수값은 단순보 보다 외팔보에서 크게 발생함을 알 수 있었다.

The stress concentration factors and stress intensity factors for a simple beam and a cantilever are analyzed by using finite element method and phtoelasticity. Using the analyzed results, the estimated graphs on stress concentration factors and stress intensity factors are obtained. To analyze stress concentration factors of notch, the dimensionless notch length H(height of specimen)/h=1.1~2 and dimensionless gap space r(radius at the notch tip)/h=0.1~0.5 are used. where h=H-c and c is the notch length. As the notch gap length increases and the gap decreases, the stress concentration factors increase. Stress concentration factors of a simple beam are greater than those of a cantilever beam. However, actually, the maximum stress values under a load, a notch length and a gap occur more greatly in the cantilever beam than in the simple beam. To analyze stress intensity factors, the normalized crack length a(crack length)/H=0.2~0.5 is used. As the length of the crack increases, the normalized stress intensity factors increase. The stress intensity factors under a constant load and a crack length occur more greatly in the cantilever beam than in the simple beam.

키워드

참고문헌

  1. Irwin, G. R., 1957, "Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate," Trans. ASME, J. Appl. Mech., Vol. 24, pp.361-364.
  2. Sih, G. C. and Liebowitz, H., 1968, "Mathematical Theories of Brittle Fracture. In Fracture: An Advanced Treatise, Edited by H. Liebowitz," Academic Press, New York
  3. Lee, K. H., Lee. Y. J. and Cho, S. B., 2009, "Characteristics of a Transiently Propagating Crack in Functionally Graded Materials," J. of Mech. Sci. and Tech.,Vol. 23, pp. 1306-1322. https://doi.org/10.1007/s12206-008-1004-6
  4. Lee, K. H., 2009, "Analysis of a Transiently Propagating Crack in Functionally Graded Materials Under Mode I and II," Inter. J. of Engng. Sci., Vol. 47, pp. 852-865. https://doi.org/10.1016/j.ijengsci.2009.05.004
  5. Lee, K. H., 2014, "Influence of Density Variation on the Arbitrarily Propagating Crack Tip Fields in Funactioally Graded Materials," J. of Mech. Sci. and Tech., Vol. 26, No. 6, pp. 2129-2140.
  6. Lee, K. H., 2016, "Analysis of a Propagating Crack Tip in Orthotropic Functionally Graded Materials," Compo. part B, Vol, 84, pp. 83-97. https://doi.org/10.1016/j.compositesb.2015.08.068
  7. Bowie, O.L. and Freese, C.E., 1972, "Central Crack in Plane Orthotropic Rectangular Sheet," Int. J. Fract. Vol. 8, No. 1, pp. 49-58. https://doi.org/10.1007/BF00185197
  8. Berto, F. and Barati, E., 2011, "Fracture Assessment of U-notches Under Three Point Bending by Means of Local Energy Density," Materials and Design, Vol. 32(2), pp. 822-830. https://doi.org/10.1016/j.matdes.2010.07.017
  9. Yao W., Zhang, Z., Hu, X., 2014, "A Singular Element for Reissner Plate Bending Problem with V-shaped Notches," Theo. and Applied Fract. Mechan., Vol. 74, pp. 143-156. https://doi.org/10.1016/j.tafmec.2014.09.003
  10. Afshar, A., Daneshyar, A. and Mohammadi, S., 2015, "XFEM Analysis of Fiber Bridging in Mixed-Mode Crack Propagation in Composites," Composite Structures, Vol. 125, pp. 314-327. https://doi.org/10.1016/j.compstruct.2015.02.002
  11. Ashokan, K. and Ramesh, K., 2009, "An Adaptive Scanning Scheme for Effective Whole Field Stress Separation in Digital Photoelasticity," Optics & Laser Tech., Vol. 41, No. 1, pp. 25-31. https://doi.org/10.1016/j.optlastec.2008.04.007
  12. Umezaki, E. and Terauchi, S., 2002, "Extraction of Isotropic Points Using Simulated Isoclinics Obtained by Photoelasticity-Assisted Finite Element Analysis," Optics and Lasers in Engng., Vol. 38, No. 1, pp. 71-85. https://doi.org/10.1016/S0143-8166(01)00158-0
  13. Timilsina, S., Lee, K. H., Kwon, Y. N. and Kim, J. S., 2015, "Optical Evaluation of In Situ Crack Propagation by Using Mechanoluminescence of SrAl2O4 : Eu2+, Dy3+," J. Am. Ceram. Soc., Vol. 98, No. 7, 2197-2204. https://doi.org/10.1111/jace.13566
  14. Robert, S. and Dariusz, B. 2015, "Strain Analysis at Notch Root in Laser Welded Samples Using Material Properties of Individual Weld Zones," Inter. J. of Fatigue, Vol. 74, pp. 71-80. https://doi.org/10.1016/j.ijfatigue.2014.12.004
  15. Leven, M. M. and Frocht, M. M., 1953, "Stress Concentration Factors for a Single Notch in a Flat Plate in Pure and Central Bending," Proc. SESA, Vol. 11, No. 2, p. 179.
  16. Troyani, N., Hernandez, S. I., Villarroel, G., Pollonais, Y. and Gomes, C., 2004, "Theoretical Stress Concentration Factors for Short Flat Bars with Opposite U-shaped Notches Subjected to In-plane Bending," Inter. J. of Fatigue, Vol. 26, No. 12, pp. 1303-1310. https://doi.org/10.1016/j.ijfatigue.2004.04.007
  17. Tlilan, H. M, Sakai, N. and Majima, T., 2006, "Effect of Notch Depth on Strain-concentration Factor of Rectangular Bars with a Single-edge Notch Under Pure Bending," Inter. J. Solids And Struct. Vol. 43, No. 3, pp. 459-474. https://doi.org/10.1016/j.ijsolstr.2005.03.069
  18. Barati, E. and Mohammadi, A., 2013, "A New Practical Equation for Evaluation of Strain-energy Density Distribution and J-integral in Plates with Blunt V-notches Under Bending Loading," Materials and Design, Vol. 46, pp. 873-880. https://doi.org/10.1016/j.matdes.2012.11.019
  19. Yazdanmehr, A. and Soltani, N., 2014, "Evaluation of Stress Intensity Factors of Rounded V and U Notches Under Mixed Mode Loading, using the Experimental Method of Caustics," Theo. and Applied Fract. Mech., Vol. 74, pp. 79-85. https://doi.org/10.1016/j.tafmec.2014.07.011
  20. Srawley, J. E., 1976, "Wide Range Stress Intensity Factor Expressions for ASTM E399 Standard Fracture Tougfness Specimens," Int. J. Fract. Mech., 12, pp. 475-476.
  21. Woo, C. W, Cheung, Y. K, Chen, Y. Z. and Wang, Y. H., 1988, "A Simple Model for the contact Problem of a Finite Cracked Plate in Bending," Engng. Fract. Mech., Vol. 29, No. 2, pp. 227-231. https://doi.org/10.1016/0013-7944(88)90049-5
  22. Iida, J., Hasebe, N. and Nakamura, T., 1990, "Approximate Expressions for SIF of Crack Initiating from Notch for Thin Plate Bending and Plane Problems," Engng Fract. Mech., Vol. 36, No. 5, pp. 819-825. https://doi.org/10.1016/0013-7944(90)90410-I
  23. Lim, I. L., Johnston, I. W. and Choi, S. K., 1993, "Stress Intensity Factors for Semi-circular Specimens Under Three-point Bending," Enging. Fract. Mech., Vol. 44, No. 3, pp. 363-382. https://doi.org/10.1016/0013-7944(93)90030-V
  24. Meshii, T. and Watanabe, K., 1998, "Closed-form Stress Intensity Factor for an Arbitrarily Located Inner Circumferential Surface Crack in a Cylinder Subjected to Axisymmetric Bending Loads," Engng. Fract. Mech., Vol. 59 No. 5, pp. 589-597. https://doi.org/10.1016/S0013-7944(97)00172-0
  25. Alatawi, I. A. and Trevelyan, J., 2015, "A Direct Evaluation of Stress Intensity Factors Using the Extended Dual Boundary Element Method," Engng. Analy. with Boundary Elements, Vol. 52, pp. 56-63. https://doi.org/10.1016/j.enganabound.2014.11.022
  26. Seo, B. S., 2015, "Stress Analysis on Notch and Crack Tip of the Beam," Master Thesis, Kyungpook National University.
  27. Broek, D., 1982, "Elementary Engineering Fracture Mechanics," Third Revised ed., Martinus Nijhoff Pub.
  28. Dally, J. W. and Riley W. F., 1978, "Experimental Stress Analysis" McGraw Hill.