DOI QR코드

DOI QR Code

Seasonal Variation of Surface Sediments in 2014 on the Gochang Open-Coast Intertidal Flat, Southwestern Korea

고창 개방형 조간대 표층 퇴적물의 2014년 계절 변화

  • Kang, Sol-Ip (Division of Science Education and Institute of Science Education, Chonbuk National University) ;
  • Ryang, Woo-Hun (Division of Science Education and Institute of Science Education, Chonbuk National University) ;
  • Jin, Jae-Hwa (Petroleum and Marine Resources Division, Korea Institute of Geoscience and Mining Resources (KIGAM)) ;
  • Chun, Seung-Soo (Faculty of Earth Systems and Environmental Sciences, Chonnam National University)
  • 강솔잎 (전북대학교 과학교육학부/과학교육연구소) ;
  • 양우헌 (전북대학교 과학교육학부/과학교육연구소) ;
  • 진재화 (한국지질자원연구원 석유해저자원연구부) ;
  • 전승수 (전남대학교 지구환경과학부)
  • Received : 2016.01.23
  • Accepted : 2016.04.15
  • Published : 2016.04.30

Abstract

The Gochang open-coast intertidal flat is located in the southwestern coast of Korea (the eastern part of the Yellow Sea), characterized by macro-tidal range, an open-coast type, and sand substrates. This study has investigated seasonal variation in sedimentary facies of surface sediments in the Gochang intertidal flat. In the four seasons of February, May, August, and November, 2014, surface sediments of 252 sites in total were sampled and analyzed along three survey lines. The surface sediments of the Gochang intertidal flat in 2014 consisted mainly of fine-grained sand sediments showing a trend in grain size to be coarser in winter and finer in summer. Based on seasonal wave and tidal level data recorded near the study area, it was interpreted that the seasonal effects of wave were stronger than those of tide as a factor controlling surface sedimentation. High waves in winter resulted in the coarsening trend of grain size in surface sediments, whereas, during summer time, the sediments became finer by relatively low waves. Spatial sedimentary facies of the Gochang intertidal flat in 2014 represented that seasonal deviation of the upper tidal zone was larger than that of the lower tidal zone, hence sediments getting coarser in grain size and poorly sorted in the upper tidal zone. From upper to lower tidal zone, the grain size became finer and sediments were better-sorted, showing smaller seasonal deviations.

고창 개방형 조간대는 황해의 동편, 한국 서남해 연안에 위치하며, 대조차, 개방형 연안, 모래 저질의 특징을 보인다. 본 연구는 고창 조간대에서 표층 퇴적물의 계절별 퇴적상 변화를 연구하였다. 2014년 2월, 5월, 8월, 11월의 사계절에 3개 측선을 따라 총 252개 지점에서 표층 퇴적물을 채취하고 분석하였다. 고창 조간대의 2014년 표층 퇴적물은 주로 세립 사질 퇴적물로 구성되며, 계절별로 겨울에 조립하고, 여름에 세립한 경향을 보였다. 연구 지역 인근의 계절별 파랑과 조위 관측 자료에 근거하여, 고창 조간대의 표층 퇴적작용에 영향을 미치는 요인은 파랑이 조석보다 계절의 변화 효과가 큰 것으로 해석되었다. 겨울에 상대적으로 큰 파고의 파랑 영향으로 표층 퇴적물이 조립한 반면, 여름에는 상대적으로 낮은 파고의 파랑 영향으로 세립한 것으로 해석되었다. 고창 조간대의 2014년 퇴적상 공간 분포는 고조대의 계절별 편차가 저조대에 비해 상대적으로 크게 나타났으며, 고조대 입도가 조립하고 분급이 불량하게 나타났다. 고조대에서 저조대 방향으로 갈수록 입도가 세립해지고 분급이 양호해지며 계절별 편차가 작아졌다.

Keywords

References

  1. Allen, J.R.L. and Duffy, M.J., 1998, Temporal and spatial depositional patterns in the Severn Estuary, SW Britain: intertidal studies at spring-neap and seasonal scales, 1991-1993. Marine Geology, 146, 147-171. https://doi.org/10.1016/S0025-3227(97)00124-2
  2. Blott, S.J., 2010, GRADISTAT Version 8.0: A grain size distribution and statistics package for the analysis of unconsolidated sediments by sieving or laser granulometer. Instructions on the use of the GRADISTAT program, 5 p.
  3. Blott, S.J. and Pye, K., 2001, GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26, 1237-1248. https://doi.org/10.1002/esp.261
  4. Boak, E.H. and Turner, I.L., 2005, Shoreline definition and detection: a review. Journal of Coastal Research, 21, 688-703.
  5. Carter, R.W.G. and Woodroffe, C.D., 1994, Coastal evolution: late Quaternary shoreline morphodynamics. Cambridge University Press, Cambridge, 517 p.
  6. Chough, S.K., Lee, H.J., Chun, S.S., and Shinn, Y.J., 2004, Depositional processes of late Quaternary sediments in the Yellow Sea: a review. Geosciences Journal, 8, 211-264. https://doi.org/10.1007/BF02910197
  7. Dalrymple, R.W., 2010, Tidal depositional systems. In James, N.P. and Dalrymple, R.W. (eds.), Facies models 4. Geological Society of Canada, Newfoundland and Labrador, 201-231.
  8. Davis, R.A.Jr., 1985, Coastal sedimentary environments. Springer-Verlag, New York, 716 p.
  9. Davis, R.A.Jr. and Fitzgerald, D.M., 2004, Beaches and coasts. Blackwell Publishing, Malden, USA, 419 p.
  10. Davis, R.A.Jr. and Hayes, M.O., 1984, What is a wave dominated coast? Marine Geology, 60, 313-330. https://doi.org/10.1016/0025-3227(84)90155-5
  11. Fan, D., 2012, Open-coast tidal flats. In Davis, R.A. Jr. and Dalrymple, R.W. (eds.), Principles of tidal sedimentology. Springer, Dordrecht, 187-229.
  12. Fan, D., Li, C., Wang, D., Wang, P., Archer, A.W., and Greb, S.F., 2004, Morphology and sedimentation on open-coast intertidal flats of the Changjiang Delta, China. Journal of Coastal Research, 81, 23-35.
  13. Folk, R.L., 1968, Petrology of sedimentary rocks. hemphill's, Austin, USA, 170 p.
  14. Folk, R.L. and Ward, W.C., 1957, Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  15. Heward, A.P., 1981, A review of wave-dominated clastic shoreline deposits. Earth Science Review, 17, 223-276. https://doi.org/10.1016/0012-8252(81)90022-2
  16. Hobbs, C.H., 2012, The beach book: science of the shore. Columbia University Press, New York, 195 p.
  17. Kang, S.I., Ryang, W.H., and Chun, S.S., 2015, Characteristics of surface topography variation on the Gochang beach, southwestern coast of Korea. Journal of the Korean Earth Science Society, 36, 533-542. (in Korean) https://doi.org/10.5467/JKESS.2015.36.6.533
  18. Klein, G. deV., 1985, Intertidal flats and intertidal sand bodies. In Davis, R.A. Jr. (ed.), Coastal sedimentary environments. Springer-Verlag, New York, 187-224.
  19. Korea Hydrographic and Oceanographic Administration (KHOA), 2013, Tidal bench mark. http://sms.khoa.go.kr/koofs/tbm/tbm.asp?tl_id=502 (May 10th 2015)
  20. Korea Hydrographic and Oceanographic Administration (KHOA), 2013-2014, Tidal deviation calculation table. http://www.khoa.go.kr/koofs/kor/tide/tide.do (January 21th 2016)
  21. Korea Institute of Geoscience and Mineral Resources (KIGAM), 2002, Study on the coastal geology of west coast and the terrestrial wetlands: I. Study on the coastal geology of west coast. KR-03(final)-04, 242 p. (in Korean)
  22. Korea Meteorological Administration (KMA), 2013-2014a, Coastal wave buoy of marine data. http://data.kma.go.kr/svc/dts/sea/seaFargoBuoyRltmDtaReqstList.do?lrgClssCd=SEA&mddlClssCd=SEA03 (January 13th 2016)
  23. Korea Meteorological Administration (KMA), 2013-2014b, Monthly report of automatic weather system data. http://www.kma.go.kr/weather/observation/data_yearly.jsp (May 10th 2015)
  24. Lee, B.J., and Lee, S.Y., 2001, Geological report of the Gochang sheet, scale 1:50,000. Korea Institute of Geoscience and Mineral Resources, 47 p. (in Korean)
  25. Lee, H.J., Jo, H.R., Chu, Y.S., and Bahk, K.S., 2004, Sediment transport on macrotidal flats in Garolim Bay, west coast of Korea: significance of wind waves and asymmetry of tidal currents. Continental Shelf Research, 24, 821-832. https://doi.org/10.1016/j.csr.2004.01.005
  26. Li, C., Wang, P., Fan, D., Dang, B., and Li, T., 2000, Open-coast intertidal deposits and the preservation potential of individual laminae: a case study from eastcentral China. Sedimentology, 47, 1039-1051. https://doi.org/10.1046/j.1365-3091.2000.00338.x
  27. McLaren, P. and Bowles, D., 1985, The effects of sediment transport on grain-size distribution. Journal of Sedimentary Petrology, 55, 457-470.
  28. Masselink, G. and Gehrels, R., 2014, Coastal environments and global change. John Wiley and Sons, Chichester, 438 p.
  29. Oh, J.K. and Kum, B.C., 1998, Sedimentologic characteristics of macrotidal beach in Mongsanpo, west coast of Korea. Journal of the Korean Earth Science Society, 19, 310-317. (in Korean)
  30. Pilkey, O.H., Neal, W.J., Kelley, J.T., and Cooper, J.A.G., 2011, The world's beaches: a global guide to the science of the shoreline. University of California Press, Berkeley, 283 p.
  31. Reading, H.G., and Collinson, J.D., 1996, Clastic coasts. In Reading, H.G. (ed.), Sedimentary environments: processes, facies and stratigraphy, Blackwell Science, Oxford, p. 154-231.
  32. So, K.S., Ryang, W.H., Choi, S.L., and Kwon, Y.K.,, 2012, Seasonal variation of surface sediments in the Kwangseungri beach, Gochanggun, Korea. Journal of the Korean Earth Science Society, 33, 497-509. (in Korean) https://doi.org/10.5467/JKESS.2012.33.6.497
  33. So, K.S., Ryang, W.H., Kang, S.I., and Kwon, Y.K., 2010, Seasonal variation of surface sediments in the Dongho beach, Gochanggun, Korea. Journal of the Korean Earth Science Society, 31, 708-719. (in Korean) https://doi.org/10.5467/JKESS.2010.31.7.708
  34. So, K.S., Ryang, W.H., and Kwon, Y.K., 2009, Seasonal variation of surface sediments in the Myeongsasipri tidal flat, Gochanggun, SW Korea. The Sea, Journal of the Korean Society of Oceanography, 14, 181-188. (in Korean)
  35. Udden, J.A., 1914, Mechanical composition of clastic sediments. Bulletin of Geological Society of America, 25, 655-744. https://doi.org/10.1130/GSAB-25-655
  36. Wentworth, C.K., 1922, A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377-392. https://doi.org/10.1086/622910
  37. Yang, B.C. and Chun, S.S., 2001, A Seasonal model of surface sedimentation on the Baeksu open-coast intertidal flat, southwestern coast of Korea. Geosciences Journal, 5, 251-262. https://doi.org/10.1007/BF02910308
  38. Yang, B.C., Dalrymple, R.W., and Chun, S.S., 2005, Sedimentation on a wave-dominated, open-coast tidal flat, southwestern Korea: summer tidal flat-winter shoreface. Sedimentology, 52, 235-252. https://doi.org/10.1111/j.1365-3091.2004.00692.x
  39. Yang, B.C., Dalrymple, R.W., Chun, S.S., and Lee, H.J., 2006, Transgressive sedimentation and stratigraphic evolution of a wave-dominated macrotidal coast, western Korea. Marine Geology, 235, 35-48. https://doi.org/10.1016/j.margeo.2006.10.003

Cited by

  1. Geoheritages and geosites of the Gochang-gun and the Buan-gun areas, Korea vol.52, pp.5, 2016, https://doi.org/10.14770/jgsk.2016.52.5.691