DOI QR코드

DOI QR Code

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow

수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무

  • Kim, Jin (Power & Industrial Systems Performance Group, Hyosung) ;
  • Kang, Seung-Hee (Department of Aerospace Engineering, Chonbuk National University) ;
  • Ryu, Ki-Wahn (Department of Aerospace Engineering, Chonbuk National University)
  • Received : 2016.02.18
  • Accepted : 2016.04.27
  • Published : 2016.05.01

Abstract

This study focused on the aerodynamic loads of the horizontal axis wind turbine blade due to the normal turbulence inflow condition. Normal turbulence model (NTM) includes the variations of wind speed and direction, and it is characterized by turbulence intensity and standard deviation of flow fluctuation. IEC61400-1 recommends the fatigue analysis for the NTM and the normal wind profile (NWP) conditions. The aerodynamic loads are obtained at the blade hub and the low speed drive shaft for MW class horizontal axis wind turbine which is designed by using aerodynamically optimized procedure. The 6-components of aerodynamic loads are investigated between numerical results and load components analysis. From the calculated results the maximum amplitudes of oscillated thrust and torque for LSS with turbulent inflow condition are about 5~8 times larger than those with no turbulent inflow condition. It turns out that the aerodynamic load analysis with normal turbulence model is essential for structural design of the wind turbine blade.

본 연구에서는 난류 유입조건을 갖는 수평축 풍력터빈 블레이드의 공력 하중에 대해 초점을 맞추어 연구하였다. 난류모델은 풍속과 방향에 대한 변동을 포함하며, 그 특성은 난류 강도와 표준편차로 표현된다. IEC61400-1에서는 정상 난류 모델과 정상 풍속 측면도에 대해서 피로해석을 수행하도록 규정하고 있다. 이를 위해 공력 최적설계 절차를 통해 얻어낸 MW급 수평축 풍력터빈 블레이드 허브와 저속 회전축에 대한 공력하중 해석을 수행한다. 공력하중 성분은 수치적인 절차를 통해 얻어내며 이를 블레이드 회전 특성을 고려하여 해석적으로 검토하였다. 난류 조건을 고려했을 때의 최대 추력과 토크의 변동치는 난류 조건을 고려하지 않았을 때의 값들에 비해 5~8 배 더 큰 값을 보였다. 따라서 난류 조건을 반영한 하중 해석은 풍력터빈 블레이드의 구조설계에 있어서 필수적임을 확인하였다.

Keywords

References

  1. Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E., Wind energy handbook, 2nd edition, John Wiley & Sons, 2011.
  2. IEC-61400-1, Wind Turbine Generator Systems, Part 1: Safety Requirements. International Electrotechnical Commission, Geneva, Swiss, 2005.
  3. Tangler, J. L., "The nebulous art of using wind tunnel airfoil data for predicting rotor performance," NREL/CP-500-31243, Jan. 2002.
  4. He, C., Development and application of a generalized dynamic wake theory for lifting rotors, Georgia Institute of Technology, 1989.
  5. Hansen, M. H., Gaunaa, M., Aagaard Madsen, H., "A Beddoes-Leishman type dynamic stall model in state-space and indicial formulation," RisO-R-1354, Roskilde, Denmark, 2004.
  6. Jelavic, M., Peric, N., and Car, S., "Estimation of wind turbulence model parameters," ICCA, Vol. 1, 2005, pp. 89-94.
  7. Buhl, Jr. M. L., "SNwind user's guide," NREL/EL-500-30121, National Renewable Energy Laboratory, Golden, CO. USA.
  8. Petersen, E. L., Mortensen, N. G., Landberg, L., Hojstrup, J., Frank, H. P., "Wind power meteorology, Part I: climate and turbulence," Wind Energy, Vol. 1, No. 1, pp. 2-22, 1998. https://doi.org/10.1002/(SICI)1099-1824(199809)1:1<2::AID-WE15>3.0.CO;2-Y
  9. Lee, C. S., "Optimal Aerodynamic Design and Load Calculation for Blade of 1 MW Horizontal Axis Wind Turbine," Master's Thesis, Chonbuk National University, 2005.
  10. Jonkman, J. M., and Buhl, M. L., Jr., FAST User's Guide, NREL/EL-500-29798, NREL, March, 2004.
  11. Moriarty, P. J., Hansen, A. C., "AeroDyn Theory Manual," NREL/TP-500-36881, January, 2005.
  12. Ryu, Ki-Wahn, "Optimal Aerodynamic Design and Performance Analysis for Pitch-Controlled HAWT," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 35, No. 10, 2007, pp. 891-898. https://doi.org/10.5139/JKSAS.2007.35.10.891
  13. KIm, D. H., Lee, J. H., Tran, T. T., Kwak, Y. S., and Song, J. S., "Extreme Design Load Case Analyses of a 5 MW Offshore Wind Turbine Using Unsteady Computational Fluid Dynamics," Journal of Wind Energy, Vol. 5, No. 1, 2014, pp. 22-32.

Cited by

  1. A Comparative Study on Aerodynamic Validation in Design Process of an Airfoil for Megawatt-Class Wind Turbine vol.44, pp.11, 2016, https://doi.org/10.5139/JKSAS.2016.44.11.933