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1. Introduction

In this paper, we investigate the periodic character and the form of the solu-
tions of some rational difference equations systems of order three

xn+1 =
xn−1yn−2

yn (−1± xn−1yn−2)
, yn+1 =

yn−1xn−2

xn (±1± yn−1xn−2)
,

with initial conditions x−2, x−1, x0, y−2, y−1 and y0 are nonzero real numbers.
In recent years, rational difference equations have attracted the attention of

many researchers for varied reasons. On the one hand, they provide examples
of nonlinear equations which are, in some cases, treatable but whose dynamics
present some new features with respect to the linear case. On the other hand,
rational equations frequently appear in some biological models, and, hence, their
study is of interest also due to their applications. The periodicity of the positive
solutions of the rational difference equations systems

xn+1 = 1
yn

, yn+1 = yn

xn−1yn−1
,
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has been obtained by Cinar [4].
Elabbasy et al. [7] has studied the solutions of particular cases of the following
general system of difference equations

xn+1 = a1+a2yn

a3zn+a4xn−1zn
, yn+1 = b1zn−1+b2zn

b3xnyn+b4xnyn−1
, zn+1 = c1zn−1+c2zn

c3xn−1yn−1+c4xn−1yn+c5xnyn
.

The behavior of positive solutions of the following system

xn+1 = xn−1

1+xn−1yn
, yn+1 = yn−1

1+yn−1xn
.

has been studied by Kurbanli et al. [24].
Kurbanli [25] investigated the behavior of the solution of the difference equa-

tion system

xn+1 = xn−1

xn−1yn−1 , yn+1 = yn−1

yn−1xn−1 , zn+1 = 1
znyn

.

Özban [26] has investigated the positive solution of the system of rational dif-
ference equations

xn+1 = a
yn−3

, yn+1 = byn−3

xn−qyn−q
.

Also, Touafek et al. [28] studied the periodicity and gave the form of the solutions
of the following systems

xn+1 = yn

xn−1(±1±yn)
, yn+1 = xn

yn−1(±1±xn)
.

In [29] Yalçınkaya investigated the sufficient condition for the global asymptotic
stability of the following system of difference equations

zn+1 = tnzn−1+a
tn+zn−1

, tn+1 = zntn−1+a
zn+tn−1

,

In [35] Zhang et al. studied the boundedness, the persistence and global asymp-
totic stability of the positive solutions of the system of difference equations

xn+ = A+ yn−m

xn
, yn+1 = A+ xn−m

yn
.

Similar to difference equations and nonlinear systems of rational difference equa-
tions were investigated, see [1]-[38].
Definition (Periodicity).

A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for
all n ≥ −k.

2. The First System : xn+1 = xn−1yn−2

yn(−1+xn−1yn−2)
, yn+1 = yn−1xn−2

xn(1+yn−1xn−2)

In this section, we get the form of the solutions of the system of the difference
equations

xn+1 = xn−1yn−2

yn(−1+xn−1yn−2)
, yn+1 = yn−1xn−2

xn(1+yn−1xn−2)
, (1)

where n = 0, 1, 2, ... and the initial conditions x−2, x−1, x0, y−2, y−1 and y0
are arbitrary nonzero real numbers with x0y−1 ̸= 1, x−1y−2 ̸= 1.
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Theorem 1. If {xn, yn} are solutions of difference equation system (1). Then
for n = 0, 1, 2, ...,

x4n−2 =
a2n

n−1∏
i=0

(1+2ice)(1+(2i+1)ce)

c2n−1(−1+ae)n
, x4n−1 =

bf2n
n−1∏
i=0

(1+2ibd)(1+(2i+1)bd)

d2n(−1+bf)n
,

x4n =
a2n+1

n−1∏
i=0

(1+(2i+1)ce)(1+(2i+2)ce)

c2n(−1+ae)n
, x4n+1 =

bf2n+1
n−1∏
i=0

(1+(2i+1)bd)(1+(2i+2)bd)

d2n+1(−1+bf)n+1 ,

y4n−2 = d2n(−1+bf)n

f2n−1
n−1∏
i=0

(1+2ibd)(1+(2i+1)bd)

, y4n−1 = ec2n(−1+ae)n

a2n
n−1∏
i=0

(1+(2i+1)ce)(1+(2i+2)ce)

,

y4n = d2n+1(−1+bf)n

f2n
n−1∏
i=0

(1+(2i+1)bd)(1+(2i+2)bd)

, y4n+1 = ec2n+1(−1+ae)n

a2n+1(1+ce)
n−1∏
i=0

(1+(2i+2)ce)(1+(2i+3)ce)

,

where x−2 = c, x−1 = b, x0 = a, y−2 = f, y−1 = e and y0 = d.

Proof. For n = 0 the result holds. Now suppose that n > 1 and that our
assumption holds for n− 1. that is,

x4n−6 =
a2n−2

n−2∏
i=0

(1+2ice)(1+(2i+1)ce)

c2n−3(−1+ae)n
, x4n−5 =

bf2n−2
n−2∏
i=0

(1+2ibd)(1+(2i+1)bd)

d2n−2(−1+bf)n−1 ,

x4n−4 =
a2n−1

n−2∏
i=0

(1+(2i+1)ce)(1+(2i+2)ce)

c2n−2(−1+ae)n−1 , x4n−3 =
bf2n−1

n−2∏
i=0

(1+(2i+1)bd)(1+(2i+2)bd)

d2n−1(−1+bf)n
,

y4n−6 = d2n−2(−1+bf)n−1

f2n−3
n−2∏
i=0

(1+2ibd)(1+(2i+1)bd)

, y4n−5 = ec2n−2(−1+ae)n−1

a2n−2
n−2∏
i=0

(1+(2i+1)ce)(1+(2i+2)ce)

,

y4n−4 = d2n−1(−1+bf)n−1

f2n−2
n−2∏
i=0

(1+(2i+1)bd)(1+(2i+2)bd)

, y4n−3 = ec2n−1(−1+ae)n−1

a2n−1(1+ce)
n−2∏
i=0

(1+(2i+2)ce)(1+(2i+3)ce)

.

Now we obtain from Eq.(1) that

x4n−2 = x4n−4y4n−5

y4n−3(−1+x4n−4y4n−5)

= ae ec2n−1(−1+ae)n−1

a2n−1(1+ce)
n−2∏
i=0

(1+(2i+2)ce)(1+(2i+3)ce)

(−1+ae)

=
aea2n−1(1+ce)

n−2∏
i=0

(1+(2i+2)ce)(1+(2i+3)ce)

ec2n−1(−1+ae)n−1(−1+ae) =
a2n

n−1∏
i=0

(1+(2i)ce)(1+(2i+1)ce)

c2n−1(−1+ae)n ,

y4n−2 = y4n−4x4n−5

x4n−3(1+y4n−4x4n−5)
=

bd
n−2∏
i=0

(1+(2i+2)bd)

n−2∏
i=0

(1+(2i)bd)

bf2n−1
n−2∏
i=0

(1+(2i+1)bd)(1+(2i+2)bd)

d2n−1(−1+bf)n

1+

bd

(
n−2∏
i=0

(1+(2i)bd)

)
n−2∏
i=0

(1+(2i+2)bd)


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=

(
bd

(1+(2n−2)bd)

)
 bf2n−1

n−2∏
i=0

(1+(2i+1)bd)(1+(2i+2)bd)

d2n−1(−1+bf)n

(
1 + bd

(1+(2n−2)bd)

)
= d2n(−1+bf)n(

f2n−1
n−2∏
i=0

(1+(2i+1)bd)(1+(2i+2)bd)

)
(1+(2n−1)bd)

= d2n(−1+bf)n

f2n−1
n−1∏
i=0

(1+(2i+1)bd)(1+(2i)bd)

.

Also, we see from Eq.(1) that

x4n−1 = x4n−3y4n−4

y4n−2(−1+x4n−3y4n−4)
=

(
bf

−1+bf

)
 d2n(−1+bf)n

f2n−1
n−1∏
i=0

(1+(2i)bd)(1+(2i+1)bd)

(−1+
bf

−1+bf

)

=
bf2n

n−1∏
i=0

(1+(2i)bd)(1+(2i+1)bd)

d2n(−1+bf)n ,

and

y4n−1 =
y4n−3x4n−4

x4n−2 (1 + y4n−3x4n−4)

=

ec

(1+ce)
n−2∏
i=0

(1+(2i+3)ce)

n−2∏
i=0

(1+(2i+1)ce)

a2n
n−1∏
i=0

(1+(2i)ce)(1+(2i+1)ce)

c2n−1(−1+ae)n

1+

ec

(
n−2∏
i=0

(1+(2i+1)ce)

)

(1+ce)
n−2∏
i=0

(1+(2i+3)ce)


= c2n−1(−1+ae)nec(

a2n
n−1∏
i=0

(1+(2i)ce)(1+(2i+1)ce)

)
(1+(2n−1)ce+ce)

= ec2n(−1+ae)n(
a2n

n−1∏
i=0

(1+(2i)ce)(1+(2i+1)ce)

)
(1+(2n)ce)

= ec2n(−1+ae)n

a2n
n−1∏
i=0

(1+(2i+1)ce)(1+(2i+2)ce)

.

Also, we can prove the other relations. This completes the proof. �

3. The Second System : xn+1 = xn−1yn−2

yn(−1+xn−1yn−2)
, yn+1 = yn−1xn−2

xn(−1+yn−1xn−2)

In this section, we get the solutions of the system of the difference equations

xn+1 = xn−1yn−2

yn(−1+xn−1yn−2)
, yn+1 = yn−1xn−2

xn(−1+yn−1xn−2)
, (2)

where n = 0, 1, 2, ... and the initial conditions x−2, x−1, x0, y−2, y−1 and y0
are arbitrary nonzero real numbers with x−2y−1, x0y−1, x−1y0, x−1y−2 ̸= 1.
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Theorem 2. If {xn, yn} are solutions of difference equation system (2). Then
for n = 0, 1, 2, ...,

x4n−2 = a2n(−1+ce)n

c2n−1(−1+ae)n , x4n−1 = bf2n(−1+bd)n

d2n(−1+bf)n ,

x4n = a2n+1(−1+ce)n

c2n(−1+ae)n , x4n+1 = bf2n+1(−1+bd)n

d2n+1(−1+bf)n+1 ,

y4n−2 = d2n(−1+bf)n

f2n−1(−1+bd)n , y4n−1 = ec2n(−1+ae)n

a2n(−1+ce)n ,

y4n = d2n+1(−1+bf)n

f2n(−1+bd)n , y4n+1 = ec2n+1(−1+ae)n

a2n+1(−1+ce)n+1 .

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our
assumption holds for n− 1. that is,

x4n−6 = a2n−2(−1+ce)n−1

c2n−3(−1+ae)n−1 , x4n−5 = bf2n−2(−1+bd)n−1

d2n−2(−1+bf)n−1 ,

x4n−4 = a2n−1(−1+ce)n−1

c2n−2(−1+ae)n−1 , x4n−3 = bf2n−1(−1+bd)n−1

d2n−1(−1+bf)n ,

y4n−6 = d2n−2(−1+bf)n−1

f2n−3(−1+bd)n−1 , y4n−5 = ec2n−2(−1+ae)n−1

a2n−2(−1+ce)n−1 ,

y4n−4 = d2n−1(−1+bf)n−1

f2n−2(−1+bd)n−1 , y4n−3 = ec2n−1(−1+ae)n−1

a2n−1(−1+ce)n .

Now it follows from Eq.(2) that

x4n−2 = x4n−4y4n−5

y4n−3(−1+x4n−4y4n−5)

=

(
a2n−1(−1+ce)n−1

c2n−2(−1+ae)n−1

)(
ec2n−2(−1+ae)n−1

a2n−2(−1+ce)n−1

)
(

ec2n−1(−1+ae)n−1

a2n−1(−1+ce)n

)(
−1+

(
a2n−1(−1+ce)n−1

c2n−2(−1+ae)n−1

)(
ec2n−2(−1+ae)n−1

a2n−2(−1+ce)n−1

))

= aea2n−1(−1+ce)n

(ec2n−1(−1+ae)n−1)(−1+ae) =
a2n(−1+ce)n

c2n−1(−1+ae)n ,

y4n−2 = y4n−4x4n−5

x4n−3(−1+y4n−4x4n−5)

=

(
d2n−1(−1+bf)n−1

f2n−2(−1+bd)n−1

)(
bf2n−2(−1+bd)n−1

d2n−2(−1+bf)n−1

)
(

bf2n−1(−1+bd)n−1

d2n−1(−1+bf)n

)(
−1+

(
d2n−1(−1+bf)n−1

f2n−2(−1+bd)n−1

)(
bf2n−2(−1+bd)n−1

d2n−2(−1+bf)n−1

))

= bd(
bf2n−1(−1+bd)n−1

d2n−1(−1+bf)n

)
(−1+bd)

= d2n(−1+bf)n

f2n−1(−1+bd)n .

Also, we see from Eq.(2) that

x4n−1 = x4n−3y4n−4

y4n−2(−1+x4n−3y4n−4)

=

(
bf2n−1(−1+bd)n−1

d2n−1(−1+bf)n

)(
d2n−1(−1+bf)n−1

f2n−2(−1+bd)n−1

)
(

d2n(−1+bf)n

f2n−1(−1+bd)n

)(
−1+

(
bf2n−1(−1+bd)n−1

d2n−1(−1+bf)n

)(
d2n−1(−1+bf)n−1

f2n−2(−1+bd)n−1

))
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=

(
bf

−1+bf

)
(

d2n(−1+bf)n

f2n−1(−1+bd)n

)(
−1+

bf
−1+bf

) = bf2n(−1+bd)n

d2n(−1+bf)n ,

y4n−1 = y4n−3x4n−4

x4n−2(−1+y4n−3x4n−4)

=

(
ec2n−1(−1+ae)n−1

a2n−1(−1+ce)n

)(
a2n−1(−1+ce)n−1

c2n−2(−1+ae)n−1

)
(

a2n(−1+ce)n

c2n−1(−1+ae)n

)(
−1+

(
ec2n−1(−1+ae)n−1

a2n−1(−1+ce)n

)(
a2n−1(−1+ce)n−1

c2n−2(−1+ae)n−1

))

=

(
ec

−1+ce

)
(

a2n(−1+ce)n

c2n−1(−1+ae)n

)(
−1+

(
ec

−1+ce

)) = c2n−1(−1+ae)n(ec)
a2n(−1+ce)n(1−ce+ce) =

ec2n(−1+ae)n

a2n(−1+ce)n .

By the same way we can prove the other relations. The proof is complete. �

Lemma 1. The solution of system (2) is unbounded except in the following case.

Theorem 3. System (2) has a periodic solution of period four iff d = f, a = c

and it will be taken the following form {xn} =
{
c, b, a, b

−1+bf , c, ...
}
, {yn} ={

f, e, d, e
−1+ce , f, e, ...

}
.

Proof. First suppose that there exists a prime period four solution

{xn} =
{
c, b, a, b

−1+bf , c, b, a, ...
}
, {yn} =

{
f, e, d, e

−1+ce , f, e, d, ...
}
,

of system (2), we see from the form of the solution of system (2) that

x4n−2 = c = a2n(−1+ce)n

c2n−1(−1+ae)n , x4n−1 = b = bf2n(−1+bd)n

d2n(−1+bf)n ,

x4n = a = a2n+1(−1+ce)n

c2n(−1+ae)n , x4n+1 = b
(−1+bf) =

bf2n+1(−1+bd)n

d2n+1(−1+bf)n+1 ,

y4n−2 = f = d2n(−1+bf)n

f2n−1(−1+bd)n , y4n−1 = e = ec2n(−1+ae)n

a2n(−1+ce)n ,

y4n = d = d2n+1(−1+bf)n

f2n(−1+bd)n , y4n+1 = e
−1+ce = ec2n+1(−1+ae)n

a2n+1(−1+ce)n+1 .

Then we get d = f, a = c. Second assume that d = f, a = c. Then we see from
the form of the solution of system (1) that

x4n−2 = a2n(−1+ae)n

c2n−1(−1+ae)n = c, x4n−1 = bf2n(−1+bd)n

d2n(−1+bd)n = b,

x4n = a2n+1(−1+ae)n

c2n(−1+ae)n = a, x4n+1 = bf2n+1(−1+bd)n

d2n+1(−1+bd)n+1 = b
(−1+bd) ,

y4n−2 = d2n(−1+bf)n

f2n−1(−1+bd)n = f, y4n−1 = ec2n(−1+ae)n

a2n(−1+ce)n = e,

y4n = d2n+1(−1+bf)n

f2n(−1+bd)n = d, y4n+1 = ec2n+1(−1+ae)n

a2n+1(−1+ce)n+1 = e
(−1+ce) .

Thus we have a periodic solution of period four and the proof is complete. �
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Lemma 2. System (2) has a periodic solution of period two iff d = f, a =
c, bd = ce = 2 and it will be taken the following form {xn} = {c, b, c, b, ...} ,
{yn} = {f, e, f, e, ...} .

Proof. The proof is consequently from the previous theorem and so, will be
omitted. �

4. Other Systems

Here we study some systems of difference equations and the proof of all the
Theorems are similar to above systems and so, will be omitted and in all cases
we suppose that x−2 = c, x−1 = b, x0 = a, y−2 = f, y−1 = e and y0 = d.

xn+1 = xn−1yn−2

yn(−1+xn−1yn−2)
, yn+1 = yn−1xn−2

xn(1−yn−1xn−2)
. (3)

xn+1 = xn−1yn−2

yn(−1−xn−1yn−2)
, yn+1 = yn−1xn−2

xn(1+yn−1xn−2)
. (4)

xn+1 = xn−1yn−2

yn(−1−xn−1yn−2)
, yn+1 = yn−1xn−2

xn(1−yn−1xn−2)
. (5)

xn+1 = xn−1yn−2

yn(−1+xn−1yn−2)
, yn+1 = yn−1xn−2

xn(−1−yn−1xn−2)
. (6)

xn+1 = xn−1yn−2

yn(−1−xn−1yn−2)
, yn+1 = yn−1xn−2

xn(−1+yn−1xn−2)
. (7)

xn+1 = xn−1yn−2

yn(−1−xn−1yn−2)
, yn+1 = yn−1xn−2

xn(−1−yn−1xn−2)
. (8)

Theorem 4. The solutions of the following system (3) with x0y−1 ̸= 1, x−1y−2 ̸=
1 are given by the following formula for n = 0, 1, 2, ...,

x4n−2 =
a2n

n−1∏
i=0

(1−(2i)ce)(1−(2i+1)ce)

c2n−1(−1+ae)n , x4n−1 =
bf2n

n−1∏
i=0

(1−(2i)bd)(1−(2i+1)bd)

d2n(−1+bf)n ,

x4n =
a2n+1

n−1∏
i=0

(1−(2i+1)ce)(1−(2i+2)ce)

c2n(−1+ae)n , x4n+1 =
bf2n+1

n−1∏
i=0

(1−(2i+1)bd)(1−(2i+2)bd)

d2n+1(−1+bf)n+1 ,

y4n−2 = d2n(−1+bf)n

f2n−1
n−1∏
i=0

(1−(2i)bd)(1−(2i+1)bd)

, y4n−1 = ec2n(−1+ae)n

a2n
n−1∏
i=0

(1−(2i+1)ce)(1−(2i+2)ce)

,

y4n = d2n+1(−1+bf)n

f2n
n−1∏
i=0

(1−(2i+1)bd)(1−(2i+2)bd)

, y4n+1 = ec2n+1(−1+ae)n

a2n+1(1−ce)
n−1∏
i=0

(1−(2i+2)ce)(1−(2i+3)ce)

.

Theorem 5. If {xn, yn} are solutions of the difference equation system (4)
where the initial conditions x−2, x−1, x0, y−2, y−1 and y0 are arbitrary nonzero
real numbers with x0y−1 ̸= −1, x−1y−2 ̸= −1. Then for n = 0, 1, 2, ...,

x4n−2 =
a2n

n−1∏
i=0

(1+(2i)ce)(1+(2i+1)ce)

c2n−1(−1−ae)n , x4n−1 =
bf2n

n−1∏
i=0

(1+(2i)bd)(1+(2i+1)bd)

d2n(−1−bf)n ,

x4n =
a2n+1

n−1∏
i=0

(1+(2i+1)ce)(1+(2i+2)ce)

c2n(−1−ae)n , x4n+1 =
bf2n+1

n−1∏
i=0

(1+(2i+1)bd)(1+(2i+2)bd)

d2n+1(−1−bf)n+1 ,

y4n−2 = d2n(−1−bf)n

f2n−1
n−1∏
i=0

(1+(2i)bd)(1+(2i+1)bd)

, y4n−1 = ec2n(−1−ae)n

a2n
n−1∏
i=0

(1+(2i+1)ce)(1+(2i+2)ce)

,
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y4n = d2n+1(−1−bf)n

f2n
n−1∏
i=0

(1+(2i+1)bd)(1+(2i+2)bd)

, y4n+1 = ec2n+1(−1−ae)n

a2n+1(1+ce)
n−1∏
i=0

(1+(2i+2)ce)(1+(2i+3)ce)

.

Theorem 6. If {xn, yn} are solutions of the difference equations system (5)
where the initial conditions x−2, x−1, x0, y−2, y−1 and y0 are arbitrary nonzero
real numbers with x0y−1 ̸= −1, x−1y−2 ̸= −1. Then for n = 0, 1, 2, ...,

x4n−2 =
a2n

n−1∏
i=0

(1−(2i)ce)(1−(2i+1)ce)

c2n−1(−1−ae)n , x4n−1 =
bf2n

n−1∏
i=0

(1−(2i)bd)(1−(2i+1)bd)

d2n(−1−bf)n ,

x4n =
a2n+1

n−1∏
i=0

(1−(2i+1)ce)(1−(2i+2)ce)

c2n(−1−ae)n , x4n+1 =
bf2n+1

n−1∏
i=0

(1−(2i+1)bd)(1−(2i+2)bd)

d2n+1(−1−bf)n+1 ,

y4n−2 = d2n(−1−bf)n

f2n−1
n−1∏
i=0

(1−(2i)bd)(1−(2i+1)bd)

, y4n−1 = ec2n(−1−ae)n

a2n
n−1∏
i=0

(1−(2i+1)ce)(1−(2i+2)ce)

,

y4n = d2n+1(−1−bf)n

f2n
n−1∏
i=0

(1−(2i+1)bd)(1−(2i+2)bd)

, y4n+1 = ec2n+1(−1−ae)n

a2n+1(1−ce)
n−1∏
i=0

(1−(2i+2)ce)(1−(2i+3)ce)

.

Theorem 7. Assume that {xn, yn} are solutions of the system (6) with the
initial conditions are arbitrary nonzero real numbers with x−2y−1, x−1y0 ̸= −1,
x0y−1, x−1y−2 ̸= 1. Then for n = 0, 1, 2, ...,

x4n−2 = a2n(−1−ce)n

c2n−1(−1+ae)n , x4n−1 = bf2n(−1−bd)n

d2n(−1+bf)n ,

x4n = a2n+1(−1−ce)n

c2n(−1+ae)n , x4n+1 = bf2n+1(−1−bd)n

d2n+1(−1+bf)n+1 ,

y4n−2 = d2n(−1+bf)n

f2n−1(−1−bd)n , y4n−1 = ec2n(−1+ae)n

a2n(−1−ce)n ,

y4n = d2n+1(−1+bf)n

f2n(−1−bd)n , y4n+1 = ec2n+1(−1+ae)n

a2n+1(−1−ce)n+1 .

Lemma 3. The solution of equation system (6) is unbounded except in the
following case.

Theorem 8. System (6) has a periodic solution of period four iff d = −f,

a = −c and it will be taken the following form {xn} =
{
c, b, a, b

1−bf , c, b, a, ...
}
,

{yn} =
{
f, e, d, e

1+ce , f, e, d, ...
}
.

Theorem 9. For n = 0, 1, 2, ..., the solutions of system (7) with x−2y−1, x−1y0 ̸=
1, x0y−1, x−1y−2 ̸= −1 are given by the following relations

x4n−2 = a2n(−1+ce)n

c2n−1(−1−ae)n , x4n−1 = bf2n(−1+bd)n

d2n(−1−bf)n ,

x4n = a2n+1(−1+ce)n

c2n(−1−ae)n , x4n+1 = bf2n+1(−1+bd)n

d2n+1(−1−bf)n+1 ,

y4n−2 = d2n(−1−bf)n

f2n−1(−1+bd)n , y4n−1 = ec2n(−1−ae)n

a2n(−1+ce)n ,

y4n = d2n+1(−1−bf)n

f2n(−1+bd)n , y4n+1 = ec2n+1(−1−ae)n

a2n+1(−1+ce)n+1 .
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Lemma 4. The solution of equation system (7) is unbounded except in the
following case.

Theorem 10. System (7) has a periodic solution of period four iff d = −f,

a = −c and it will be taken the following form {xn} =
{
c, b, a, b

1+bf , c, b, a, ...
}
,

{yn} =
{
f, e, d, e

1−ce , f, e, d, ...
}
.

Theorem 11. Suppose that the sequences {xn}∞n=−2 and {yn}∞n=−2 are solu-
tions of system equations (8) with x−2y−1, x−1y0, x0y−1, x−1y−2 ̸= −1, then
we obtain the following expressions of the solutions for n = 0, 1, 2, ...,

x4n−2 = a2n(−1−ce)n

c2n−1(−1−ae)n , x4n−1 = bf2n(−1−bd)n

d2n(−1−bf)n ,

x4n = a2n+1(−1−ce)n

c2n(−1−ae)n , x4n+1 = bf2n+1(−1−bd)n

d2n+1(−1−bf)n+1 ,

y4n−2 = d2n(−1−bf)n

f2n−1(−1−bd)n , y4n−1 = ec2n(−1−ae)n

a2n(−1−ce)n ,

y4n = d2n+1(−1−bf)n

f2n(−1−bd)n , y4n+1 = ec2n+1(−1−ae)n

a2n+1(−1−ce)n+1 .

Lemma 5. The solution of equation system (8) is unbounded except in the
following case.

Theorem 12. System (8) has a periodic solution of period four iff d = f,

a = c and it will be taken the following form {xn} =
{
c, b, a, b

−1−bf , c, b, a, ...
}
,

{yn} =
{
f, e, d, e

−1−ce , f, e, d, ...
}
.

Lemma 6. System (8) has a periodic solution of period two iff d = f, a =
c, bd = ce = −2 and it will be taken the following form {xn} = {c, b, c, b, ...} ,
{yn} = {f, e, f, e, ...} .

5. Numerical Examples

In order to illustrate the results of the previous sections and to support our
theoretical discussions, we consider several interesting numerical examples in
this section. These examples represent different types of qualitative behavior of
solutions to nonlinear difference equations.

Example 1. We consider numerical example for the difference system (1) with
the initial conditions x−2 = 3.07, x−1 = 0.13, x0 = 0.4, y−2 = 0.02, y−1 =
0.7 and y0 = 0.03. (See Figure 1).

Example 2. We consider interesting example for the difference system (1) with
the initial conditions x−2 = 0.07, x−1 = 0.4, x0 = −0.04, y−2 = 0.02, y−1 =
−0.07 and y0 = 0.03. (See Figure 2).

Example 3. We consider numerical example for the difference system (2) with
the initial conditions x−2 = 0.8, x−1 = 0.4, x0 = 0.9, y−2 = 0.2, y−1 =
0.7 and y0 = 0.3. (See Figure 3).
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Example 4. See Figure (4) when we take system (2) with the initial conditions
x−2 = 9, x−1 = 0.5, x0 = 7, y−2 = 8, y−1 = 2 and y0 = 4.

Example 5. We assume the difference equations system (2)when we put the
initial conditions x−2 = 9, x−1 = 7, x0 = 9, y−2 = 5, y−1 = 2 and y0 = 5. See
figure 5.

Example 6. Figure (6) shows the periodicity of the solution of the difference
system (2) with the initial conditions x−2 = −3, x−1 = 5, x0 = −3, y−2 =
0.4, y−1 = −2/3 and y0 = 0.4.
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