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1. Introduction 
 
The equations of motion of a control mechanical system 

contain terms quadratically dependent on velocity that are 
usually called the Coriolis terms. Controller synthesis 
becomes tractable in the absence of these nonlinear terms 
[6], so it is useful to find a transformation that eliminates 
them from the equations of motion. 

A control mechanical system is called quasilinearizable 
if there is a linear transformation of the velocity variables 
such that the Coriolis terms all vanish after the transfor-
mation. There has been active research on quasilinearization 
[2, 5, 7, 8], but the results were obtained by the zero 
curvature condition or by some complicated PDE conditions, 
producing restrictive outcomes. Then, very strong results 
were finally obtained in [4] where easily verifiable 
quasilinearizability conditions were derived.  

In this paper we consider feedback transformations as 
well as state transformations, in order to increase possibility 
of removing the Coriolis terms from the dynamics. A control 
mechanical system is called feedback quasilinearizable if 
all Coriolis terms can be eliminated by a linear velocity 
transformation followed by a feedback transformation. 
We here obtain a sufficient condition for feedback 
quasilinearizability and apply it to prove the feedback 
quasilinearizability of the Acrobot system. We also derive 
a condition for partial quasilinearizability via a linear 
velocity transformation in the course of obtaining the result 
on feedback quasilinearizability. 

 
 

2. Main Results  
 

2.1 Review of quasilinearization theory 
 
We review the theory of quasilinearization of mechanical 

systems in [4] from a slightly different viewpoint. We here 
use a linear bundle map from the tangent bundle TQ  of a 
given configuration space Q  to its cotangent bundle *T Q  
instead of a linear bundle map from TQ  to itself. This 
different style of presentation, however, does not affect the 
validity of the results in [4]. 

Let Q  be an n - dimensional manifold and ( )iq q=  a 
local coordinate system on Q ; refer to [1], [3] for 
manifolds theory. Let TQ  and *T Q  denote the tangent 
bundle and the cotangent bundle of Q , respectively. The 
natural pairing between TQ  and *T Q is denoted by , .< >  
The natural local coordinate bases of TQ  and *T Q are 
used. 

 
 1{ , , }nTQ span= ¶ ¶L  

 * 1{ , , }nT Q span dq dq= L . 
 
The symbol i¶  is also used as the operator of partial 

differentiation with respect to .iq  We use the Einstein 
summation convention throughout this paper and the 
following convention for the ranges of various indices: 

 

 
, , , , , 1, , ;
, , 1, , .

i j k r s n
a b c p

=
=
l L
L  

 
Consider a control mechanical system on the 

configuration space Q with Lagrangian 
 

 1( , ) ( )
2

i j
ijL q q m q q V q= -& & &  

 
and p-dimensional control bundle *W T QÌ , where 

( )ijm m= is the positive definite symmetric mass matrix 
and ( )V q  is the potential energy of the system. Since our 
results are all local, we assume that W is generated by 
p independent 1-forms as follows: 

 
 1{ , , }pW span W W= L  

 
where each 1-form , 1, , ,aW a p= L is written in 
coordinates as 
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 .i
a iaW W dq=  

 
The equations of motion of this control mechanical 

system are given by 
 

 i i j k ij ij a
jk j jaq q q m V m W u+ G + ¶ =&& & &   (1) 

 
for 1, , ,i n= L  where ( )a pu u= ÎÂ  is the control vector. 
Here, ijm  denotes the ( , )i j entry of the inverse matrix of 

( ),ijm m= and i
jkG  are the Christoffel symbols defined by 

 

 
1
2

j ijk k i
ij i j

m mm
m

q q q

æ ¶ ¶ ö¶
G = + -ç ÷ç ÷¶ ¶ ¶è ø

ll l
l . 

 
The quadratic terms i j k

jk q qG & & in the equations of motion 
are called Coriolis terms. 

Consider an invertible linear bundle map *:A TQ T Q®  
given by 

 
 ( , ) ( , ( ) )q q q A q qa =& &a .  (2) 

 
In coordinates,  
 

 ,j
i ijA qa = &  

 
where i

idqa a= . Let ( )ijB  be the inverse matrix of 

( ),ijA  i.e., ik i
kj jB A d= , where i

jd  is the Kronecker delta. 

In ( , )x a coordinates on *T Q , the equations of motion (1) 
become 

 
 i ij

jq B a=&   (3) 

 ( )1 2
2

jr ks
i k ij j ik i jk r sA A A B Ba a a= ¶ + ¶ - Gll&  

 jk jk a
ij k ij kaA m V A m W u- ¶ - ,  (4) 

 
where 1, , ,i n= L  or in vector form 

 
 1q A a-=&  

 1 1( , )f q Am dV Am Wua a - -= - -&  
 

where 
 

( )( , ) ( , )if q f qa a=  

( )1 2
2

jr ks
k ij j ik i jk r sA A A B B a aæ ö= ¶ + ¶ - Gç ÷

è ø
l

l  

( )idV V= ¶ , ( )iaW W= , ( )au u= . 
 
Notice that all the Coriolis terms vanish in the ia&  

equations in (4) if and only if 

 2 0k ij j ik i jkA A A¶ + ¶ - G =l
l    (5) 

 
for all , , ,i j k in which case the equations of motion 
become 

 
 ,iji

jx B a=&   (6) 

 jk jk a
i ij k ij kaA m V A m W ua = - ¶ -& ,  (7) 

 
or in vector form 

 
 1q A a-=&  

 1 1Am dV Am Wua - -= - -&  
 
Definition 2.1: A control mechanical system is said to 

be quasilinearizable if there is an invertible linear trans-
formation of the form (2) that transforms the equations of 
motion of the system (1) to the form (6) and (7). 

We can regard the configuration space Q  of a 
mechanical system as a Riemannian manifold equipped 
with the metric ( )ijm m= that is induced from the kinetic 
energy of the system. A vector field i

iX X= ¶ on a 
Riemannian manifold ( , )Q m is called a Killing vector 
field if it satisfies  

 
 0k k k

k ij kj i ik jX m m X m X¶ + ¶ + ¶ =   (8) 
 

for all 1 .i j n£ £ £ Letting k j
jkmX m X dqa = = , we can 

write (8) as 
 

 2 0k j j k jka a a¶ + ¶ - G =l
l   (9) 

 
in terms of the 1-form .a A 1-form that satisfies (9) is 
called a Killing 1-form. Both (8) and (9) are called the 
Killing equation. Comparison of (5) and (9) implies that 
Eq. (5) is the Killing equations in (9) for the 1-form 

: j
i ijA A dq=  for each .i Hence, a quasilinearizing 

transformation consists of n pointwise independent Killing 
1-forms, where each row of A is a Killing 1-form. 

Let ( , )iso Q m  denote the set of all Killing vector fields 
on ( , ).Q m  It is a Lie algebra over Â  under the usual 
bracket operation on vector fields. Let D denote the 
distribution on Q  that is generated by Killing vector fields, 
i.e. 

 
 { ( ) ( , )}q qspan X q T Q X iso Q mD = Î Î   (10) 

 
for each .q QÎ The rank of qD is, by definition, the 
dimension of qD as a vector subspace of .qT Q Then the 
quasilinearizability can be geometrically stated as follows. 

 
Theorem 2.2 ([4]): Let q be a point in ( , ).Q m The 

quasilinearization of the system (1) is possible around q  
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if and only if q qT QD = , i.e., rank dim .q QD =  
 

2.2 Partial quasilinearization and feedback quasil-
inearization 

 
We now pose the following two main questions for 

control mechanical systems that are not quasilinearizable: 
Q1.  (Partial Quasilinearization) How many of the 

ia& equations in (4) can be made free of the Coriolis terms 
via a transformation of the form (2)? 

Q2.  (Feedback Quasilinearization) If an affine feedback 
transformation of the form 

 
 ( )u h q u= + %  (11) 

 
with : ph Q ®Â  and puÎÂ , is allowed in addition to 
the linear transformation of the form (2), when can a given 
system be transformed to the form (6) and (7), i.e, to the 
following form 

 
 1q A a-=&   (12) 

 1 1 ,Am dV Am Wua - -= - -&   (13) 
 

which is free of the Coriolis terms? 
 
Definition 2.3: A control mechanical system is called 

feedback quasilinearizable if its equations of motion can be 
transformed to the form (12) and (13) via a transformation 
of the form (2) followed by a feedback transformation of 
the form (11). 

 
Definition 2.4: A point q  in ( , )Q m  is called regular if 

the rank of the distribution D defined in (10) is constant in 
a neighborhood of q . 

 
We now provide an answer to the first question we 

posed in the beginning of this section. 
 
Theorem 2.5 (Partial Quasilinearization): Let 0q  be a 

regular point in ( , ).Q m Then, at least k ia& -equations can 
be made free of the Coriolis terms via an invertible 
transformation of the form (2) around 0q  if and only if 
rank kD ³  in a neighborhood of 0.q  

 
Proof: ( )Þ  By hypothesis there is a linear 

transformation ( )A q qa = & such that the first k ia& -
equations can be written as 

 
 jk jk a

i ij k ij kaA m V A m W ua = - ¶ -&  
 

for 1, ,i k= L  in a neighborhood of 0q . In other words 
Eq. (5) holds for 1, , .i k= L  Hence, the first k row 
vectors of A are pointwise independent Killing 1-forms, 
which implies that rank kD ³  in a neighborhood of 0q . 

( )Ü  This direction can be proven similarly.  

The above theorem can be also interpreted as follows: 
k  is the maximum number of the ia&  equations that can 
be made free of Coriolis terms via a transformation of the 
form (2) around a regular point 0q  if and only if 
rank kD = in a neighborhood of 0.q  

We now answer the second question posed in the 
beginning of this section. 

 
Theorem 2.6 (Feedback Quasilinearization): A control 

mechanical system is feedback-quasilinearizable around a 
regular point 0q  if 

 
 0

qq WD Ì  
 

for each q  in a neighborhood of 0q , where 0D  is the 
codistribution on Q  that annihilates D , i.e., pointwise 

0 *{ , 0, }q q q q qq T Q X Xb bD = Î = " ÎD . 
 
Proof: Let k  be the constant rank of D  around 0.q  

Then there exist k  Killing vector fields 1, , kX XL that 
span D  pointwise around 0 .q Choose ( )n k-  more 
vector fields 1, ,k nX X+ L such that the set of vector fields 

1{ , , }nX XL  span TQ  around 0 .q  One can find 
( )n k-  1-forms 1, ,k nb b+ L  in 0D  around 0q  such that 

 

 
0, 1

, , 1i j
ij

if j k
X if k j nb d

£ £ì
= í + £ £î

 

 
for 1 .k i n+ £ £  Since 0 WD Ì by hypothesis, there exist  
vectors 1, ,k nu u+ L  in pÂ  such that 

 
 i iWub =  

 
for 1 ,k i n+ £ £  where ib  and iu  are assumed to be in 
column vector form. Let 

 

 [ ]1
T

nA mX mX= L
1
T

T
n

X m

X m

é ù
ê ú= ê ú
ê úë û

M  

 
the first k rows of which are Killing 1-forms since 

1, , kX XL are Killing vector fields. Let 
 
 Aqa = &  

 
or in coordinates .j

i ijA qa = &  Change coordinates from q&  
to a to transform (1) to (3) and (4), where the first k ia& -
equations in (4) become free of the Coriolis terms. Apply 
the following control puÎÂ  

 

 [ ]
1

1 ,
k

k n
n

f
u u u u

f

+

+

é ù
ê ú= +
ê ú
ë û

%L M  
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where 
 

 ( )1 2
2

jr ks
i k ij j ik i jk r sf A A A B B a a= ¶ + ¶ - Gll  

 
for 1 .k i n+ £ £  It is then easy to see that the system (3) 
and (4) is transformed via this feedback control to the 
system (12) and (13). Therefore, the system is feedback 
quasilinearizable around 0.q  

 
 

3. Example  
 
Consider the Acrobot system in Fig. 1, where there is an 

actuation u  on the outer joint. Let 1M  and 2M  be the 
masses of the bobs and 1l  and 2l  the lengths of the 
massless rods. The gravitational acceleration is denoted by 
g. Let 1q  denote the angle of the first rod measured 
counter-clockwise from the upward vertical, and 2q  the 
angle measured counterclockwise from the ray containing 
the first rod to the second rod. 

The Lagrangian of the system is given by 
 

2 2
11 1 12 1 2 22 2

1 1
2 2

L m m mq q q q= + +& & & &  

     1 2 1 1 2 2 1 2( ) cos cos( )M M g M gq q q- + - +l l  
 

where 
 

 

2 2 2
11 1 1 2 1 2 1 2 2

2
12 2 2 1 2 2

2
22 2 2

( 2 cos ),
( cos ),

.

m M M
m M
m M

q

q

= + + +

= +

=

l l l l l
l l l
l

 

 
The scalar curvature SR  of the metric ( )ijm m= is 

computed as 
 

 1 2
2 2

1 2 1 2 2 2

2 cos
( cos )

S
m

R
M M M

q

q
=

+ -l l
, 

 
which is not constant. Hence, the system is not 
quasilinearizable by Theorem III.1 in [4].  

Let us now investigate feedback quasilinearizability of 

this system. The Acrobat has only one Killing vector field 
up to a scalar factor and it is given by 1X = ¶ , which can 
be easily obtained using software Maple. Hence, 

 
 0

1 2{ }, { }.span span dqD = ¶ D =  
 
The control bundle of the Acrobot is given by 
 

 2{ }.W span dq=  
 
Since 0 ,WD Ì the Acrobot is feedback quasilinearizable 

by Theorem 2.6. 
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