DOI QR코드

DOI QR Code

Influences of the Eu Concentration and the Milling Time on Photoluminescence Properties of Y2O3-H3BO3:Eu3+ Powders Prepared by Mechanical Alloying

  • Gong, Hyun-Sic (Department of Physics Education, Chosun University) ;
  • Kim, Hyun-Goo (Department of Physics Education, Chosun University)
  • 투고 : 2015.12.30
  • 심사 : 2016.02.25
  • 발행 : 2016.04.28

초록

$Y_2O_3-H_3BO_3:Eu^{3+}$ powders are synthesized using a mechanical alloying method, and their photoluminescence (PL) properties are investigated through luminescence spectrophotometry. For samples milled for 300 min, some $Y_2O_3$ peaks ([222], [440], and [622]) and amorphous formations are observed. The 300-min-milled mixture annealed at $800^{\circ}C$ for 1 h with Eu = 8 mol% has the strongest PL intensity at every temperature increase of $100^{\circ}C$ (increasing from 700 to $1200^{\circ}C$ in $100^{\circ}C$ increments). PL peaks of the powder mixture, as excited by a xenon discharge lamp (20 kW) at 240 nm, are detected at approximately 592 nm (orange light, $^5D_o{\rightarrow}^7F_1$), 613 nm, 628 nm (red light, $^5D_o{\rightarrow}^7F_2$), and 650 nm. The PL intensity of powder mixtures milled for 120 min is generally lower than that of powder mixtures milled for 300 min under the same conditions. PL peaks due to $YBO_3$ and $Y_2O_3$ are observed for 300-min-milled $Y_2O_3-H_3BO_3$ with Eu = 8 mol% after annealing at $800^{\circ}C$ for 1 h.

키워드

참고문헌

  1. E. Arzt and L. Schult: New Materials Mechanical Alloying Techniques, DGM, Germany (1988) 3.
  2. D. Roy, D. Chakravarty, R. Mitra and I. Manna: J. Alloys Compd., 460 (2008) 320. https://doi.org/10.1016/j.jallcom.2007.06.053
  3. S. Kumaran, T. Sasikumar, R. Arockiakumar and T. S. Rao: Powder Technol., 185 (2008) 124. https://doi.org/10.1016/j.powtec.2007.10.006
  4. H. G. Kim and W. N. Myung: Inter. J. Non-Equilibrium Processing, 10 (1998) 305.
  5. C. C. Koch, O. B. Cavin, C. G. McKamey and J. O. Scarbrough: Appl. Phys. Lett., 43 (1983) 1017. https://doi.org/10.1063/1.94213
  6. R. B. Schwartz, R. R. Petrich and C. K. Saw: J. Non-Cryst. Solids, 76 (1985) 281. https://doi.org/10.1016/0022-3093(85)90005-5
  7. M. K. Chong, K. Pita and C. H. Kam: J. Phys. Chem. Solids, 66 (2005) 213. https://doi.org/10.1016/j.jpcs.2004.09.016
  8. S. J. Dhoble, I. M. Nagpure, J. G. Mahakhode, S. V. Godbole, M. K. Bhide and S. V. Moharil: Nucl. Instrum. Methods Phys. Res. B, 266 (2008) 3437. https://doi.org/10.1016/j.nimb.2008.05.010
  9. Y. Wang and L. Wang: Mater. Lett., 60 (2006) 2645. https://doi.org/10.1016/j.matlet.2006.01.056
  10. F.-S. Chen, C.-H. Hsu and C.-H. Lu: J. Alloys Compd., 505 (2010) L1. https://doi.org/10.1016/j.jallcom.2010.06.004
  11. H. S. Gong: M.S. Thesis, Photoluminescence of $Y_2O_3-H_3BO_3:Eu^{3+}$ Powders by Mechanical Alloying, Chosun University, Gwangju (2011) 30 (Korean).
  12. H.-S. Gong and H.-G. Kim: Curr. Appl. Phys., 13 (2013) 453. https://doi.org/10.1016/j.cap.2012.09.005
  13. A. Yousif, R. M. Jafer, S. Som, M. M. Duvenhage, E. Coetsee and H. C. Swart: Appl. Surf. Sci., 365 (2016) 93. https://doi.org/10.1016/j.apsusc.2016.01.013
  14. X. Guo, Y. Wang and J. Zhang: J. Cryst. Growth, 311 (2009) 2409. https://doi.org/10.1016/j.jcrysgro.2009.02.006
  15. L. Muresan, E. J. Popovici, F. I. Lucaci, R. Grecu and E. Indrea: J. Alloys Compd., 483 (2009) 346. https://doi.org/10.1016/j.jallcom.2008.08.087
  16. J. Zhang and J. Lin: J. Cryst. Growth, 271 (2004) 207. https://doi.org/10.1016/j.jcrysgro.2004.07.065
  17. W. Pan, P. Wang, Y. Xu and R. Liu: Thin Solid Films, 578 (2015) 69. https://doi.org/10.1016/j.tsf.2015.02.018
  18. Y. Tian, B. Tian, B. Chen, C. Cui, P. Huang, L. Wang and R. Hua: J. Alloys Compd., 590 (2014) 61. https://doi.org/10.1016/j.jallcom.2013.12.098