DOI QR코드

DOI QR Code

Recent Progress on the Application of Atomic Layer Deposition for Lithium Ion Batteries

원자층 증착법을 적용한 리튬 이온 전지 연구 동향

  • Kim, Dong Ha (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 김동하 (서울과학기술대학교 신소재공학과) ;
  • 최병준 (서울과학기술대학교 신소재공학과)
  • Received : 2016.04.08
  • Accepted : 2016.04.18
  • Published : 2016.04.28

Abstract

Lithium-ion batteries (LIBs) are rapidly improving in capacity and life cycle characteristics to meet the requirements of a wide range of applications, such as portable electronics, electric vehicles, and micro- or nanoelectro-mechanical systems. Recently, atomic layer deposition (ALD), one of the vapor deposition methods, has been explored to expand the capability of LIBs by producing near-atomically flat and uniform coatings on the shell of nanostructured electrodes and membranes for conventional LIBs. In this paper, we introduce various ALD coatings on the anode, cathode, and separator materials to protect them and improve their electrochemical and thermomechanical stability. In addition, we discuss the effects of ALD coatings on the three-dimensional structuring and conduction layer through activation of electrochemical reactions and facilitation of fluent charge collection.

Keywords

References

  1. H. C. M. Knoops, M. E. Donders, M. C. M. van de Sanden, P. H. L. Notten and W. M. M. Kessels: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 30 (2012) 010801. https://doi.org/10.1116/1.3660699
  2. O. Nilsen, V. Miikkulainen, K. B. Gandrud, E. Ostreng and A. Ruud: Phys. Status Solidi Appl. Mater. Sci., 211 (2014) 357. https://doi.org/10.1002/pssa.201330130
  3. X. Wang and G. Yushin: Energy Environ. Sci., 8 (2015) 1889. https://doi.org/10.1039/C5EE01254F
  4. P. H. L. Notten, F. Roozeboom, R. A. H. Niessen and L. Baggetto: Adv. Mater., 19 (2007) 4564. https://doi.org/10.1002/adma.200702398
  5. J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H Noh, S. C. Yoon, C. S. Hwang and S. I. Seok: Adv. Electron. Mater., 27 (2015) 4013. https://doi.org/10.1002/adma.201500523
  6. C. Marichy, M. Bechelany and N. Pinna: Adv. Mater., 24 (2012) 1017. https://doi.org/10.1002/adma.201104129
  7. A. M. Schwartzberg and D. Olynick: Adv. Mater., 27 (2015) 5778. https://doi.org/10.1002/adma.201500699
  8. S. M. George: Chem. Rev., 110 (2010) 111. https://doi.org/10.1021/cr900056b
  9. H. Kim, H.-B.-R. Lee and W.-J. Maeng: Thin Solid Films, 517 (2009) 2563. https://doi.org/10.1016/j.tsf.2008.09.007
  10. L. Fu, H. Liu, C. Li, Y. Wu, E. Rahm, R. Holze and H. Wu: Prog. Mater. Sci., 50 (2005) 881. https://doi.org/10.1016/j.pmatsci.2005.04.002
  11. S. W. Kim, T. H. Han, J. Kim, H. Gwon, H. S. Moon, S. W. Kang, S. O. Kim and K. Kang: ACS Nano, 3 (2009) 1085. https://doi.org/10.1021/nn900062q
  12. L. A. Riley, A. S. Cavanagh, S. M. George, Y. S. Jung, Y. Yan, S. H. Lee and A. C. Dillon: ChemPhysChem, 11 (2010) 2124. https://doi.org/10.1002/cphc.201000158
  13. M. Q. Snyder, S. A. Trebukhova, B. Ravdel, M. C. Wheeler, J. DiCarlo, C. P. Tripp and W. J. DeSisto: J. Power Sources, 165 (2007) 379. https://doi.org/10.1016/j.jpowsour.2006.12.015
  14. Y. S. Jung, A. S. Cavanagh, Y. Yan, S. M. George and A. Manthiram: J. Electrochem. Soc., 158 (2011) A1298. https://doi.org/10.1149/2.030112jes
  15. J. Liu, M. N. Banis, Q. Sun, A. Lushington, R. Li, T. K. Sham and X. Sun, Adv. Mater., 26 (2014) 6472. https://doi.org/10.1002/adma.201401805
  16. H. Chen, Q. Lin, Q. Xu, Y. Yang, Z. Shao and Y. Wang: J. Memb. Sci., 458 (2014) 217. https://doi.org/10.1016/j.memsci.2014.02.004
  17. Y. S. Jung, A. S. Cavanagh, L. Gedvilas, N. E. Widjonarko, I. D. Scott, S.-H. Lee, G.-H. Kim, S. M. George and A. C. Dillon: Adv. Energy Mater., 2 (2012) 1022. https://doi.org/10.1002/aenm.201100750
  18. N. P. Dasgupta, X. Meng, J. W. Elam and A. B. F. Martinson: Acc. Chem. Res., 48 (2015) 341. https://doi.org/10.1021/ar500360d
  19. E. Kang, Y. S. Jung, A. S. Cavanagh, G. H. Kim, S. M. George, A. C. Dillon, J. K. Kim and J. Lee: Adv. Funct. Mater., 21 (2011) 2430. https://doi.org/10.1002/adfm.201002576
  20. D. Ahn and R. Raj: J. Power Sources, 195 (2010) 3900. https://doi.org/10.1016/j.jpowsour.2009.12.116
  21. M.-L. Lee, C.-Y. Su, Y.-H. Lin, S.-C. Liao, J.-M. Chen, T.-P. Perng, J.-W. Yeh and H. C. Shih: J. Power Sources, 244 (2013) 410. https://doi.org/10.1016/j.jpowsour.2012.12.005
  22. J. Luo, X. Xia, Y. Luo, C. Guan, J. Liu, X. Qi, C. F. Ng, T. Yu, H. Zhang and H. J. Fan: Adv. Energy Mater., 3 (2013) 737. https://doi.org/10.1002/aenm.201200953
  23. K. Gerasopoulos, X. Chen, J. Culver, C. Wang and R. Ghodssi: Chem. Commun. (Camb), 46 (2010) 7349. https://doi.org/10.1039/c0cc01689f
  24. E. Memarzadeh Lotfabad, P. Kalisvaart, K. Cui, A. Kohandehghan, M. Kupsta, B. Olsen and D. Mitlin: Phys. Chem. Chem. Phys., 15, 13646 (2013). https://doi.org/10.1039/c3cp52485j
  25. C. Ban, M. Xie, X. Sun, J. J. Travis, G. Wang, H. Sun, A. C. Dillon, J. Lian and S. M. George: Nanotechnology, 24 (2013) 424002. https://doi.org/10.1088/0957-4484/24/42/424002
  26. A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh and D. Mitlin: J. Mater. Chem. A, 1 (2013) 12850. https://doi.org/10.1039/c3ta12964k
  27. F. Mattelaer, P. M. Vereecken, J. Dendooven and C. Detavernier: Chem. Mater., 27 (2015) 3628. https://doi.org/10.1021/acs.chemmater.5b00255
  28. V. Aravindan, K. B. Jinesh, R. R. Prabhakar, V. S. Kale and S. Madhavi: Nano Energy, 2 (2013) 720. https://doi.org/10.1016/j.nanoen.2012.12.007
  29. X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M. N. Banis, Y. Li, J. Yang, R. Li, X. Sun, M. Cai and M. W. Verbrugge: Adv. Funct. Mater., 22 (2012) 1647. https://doi.org/10.1002/adfm.201101068
  30. C. Guan, X. Wang, Q. Zhang, Z. Fan, H. Zhang and H. J. Fan: Nano Lett., 14 (2014) 4852. https://doi.org/10.1021/nl502192p
  31. Y. S. Jung, A. S. Cavanagh, L. A. Riley, S. H. Kang, A. C. Dillon, M. D. Groner, S. M. George and S. H. Lee: Adv. Mater., 22 (2010) 2172. https://doi.org/10.1002/adma.200903951
  32. Y. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George and S.-H. Lee: J. Electrochem. Soc., 157 (2010) A75. https://doi.org/10.1149/1.3258274
  33. J. W. Kim, J. J. Travis, E. Hu, K. W. Nam, S. C. Kim, C. S. Kang, J. H. Woo, X. Q. Yang, S. M. George, K. H. Oh, S. J. Cho and S. H. Lee: J. Power Sources, 254 (2014) 190. https://doi.org/10.1016/j.jpowsour.2013.12.119
  34. D. Guan and Y. Wang: Ionics (Kiel), 19 (2012) 1.
  35. D. Guan, J. A. Jeevarajan and Y. Wang: Nanoscale, 3 (2011) 1465. https://doi.org/10.1039/c0nr00939c
  36. X. Xiao, D. Ahn, Z. Liu, J.-H. Kim and P. Lu: Electrochem. Commun., 32 (2013) 31. https://doi.org/10.1016/j.elecom.2013.03.030
  37. I. D. Scott, Y. S. Jung, A. S. Cavanagh, Y. Yan, A. C. Dillon, S. M. George and S. H. Lee: Nano Lett., 11 (2011) 414. https://doi.org/10.1021/nl1030198
  38. J.-T. Lee, F.-M. Wang, C.-S. Cheng, C.-C. Li and C.-H. Lin: Electrochim. Acta, 55 (2010) 4002. https://doi.org/10.1016/j.electacta.2010.02.043
  39. L. A. Riley, S. Van Atta, A. S. Cavanagh, Y. Yan, S. M. George, P. Liu, A. C. Dillon and S. H. Lee: J. Power Sources, 196 (2011) 3317. https://doi.org/10.1016/j.jpowsour.2010.11.124
  40. J. Zhao and Y. Wang: J. Solid State Electrochem., 17 (2012) 1049.
  41. S. Tian, A. Xing, H. Tang, Z. Bao and G. Wu: J. Mater. Chem. A, 2 (2014) 2896. https://doi.org/10.1039/c3ta14364c
  42. J. Zhao, G. Qu, J. C. Flake and Y. Wang: Chem. Commun., 48 (2012) 8108. https://doi.org/10.1039/c2cc33522k
  43. J. Zhao and Y. Wang: Nano Energy, 2 (2013) 882. https://doi.org/10.1016/j.nanoen.2013.03.005
  44. X. Meng, D. J. Comstock, T. T. Fister and J. W. Elam: ACS Nano, 8 (2014) 10963. https://doi.org/10.1021/nn505480w

Cited by

  1. Formation of Uniform SnO2 Coating Layer on Carbon Nanofiber by Pretreatment in Atomic Layer Deposition vol.25, pp.1, 2018, https://doi.org/10.4150/KPMI.2018.25.1.43