양자점 기반 태양전지 동향

  • 서요한 (울산과학기술원 에너지 및 화학공학부) ;
  • 김기환 (울산과학기술원 에너지 및 화학공학부) ;
  • 김진영 (울산과학기술원 에너지 및 화학공학부) ;
  • 박종남 (울산과학기술원 에너지 및 화학공학부)
  • Published : 2016.05.01

Abstract

Keywords

References

  1. Masson, G. et al. Global Market Outlook for Photovoltaics until 2016 (EPIA, 2012).
  2. Mingjian, Y. et al. Colloidal quantum dot solids for solution-processed solar cells Nature Energ. DOI:10.1038/nenergy.2016.16, (2016).
  3. Best Research Cell Efficiencies (NREL, accessed on 11 January 2016)
  4. Y. C. Cao, Materials science. Impurities enhance semiconductor nanocrystal performance. Science 332, 48-49 (2011). https://doi.org/10.1126/science.1203702
  5. G. H. Carey et al., Materials processing strategies for colloidal quantum dot solar cells: advances, present-day limitations, and pathways to improvement. MRS Communications 3, 83-90 (2013). https://doi.org/10.1557/mrc.2013.17
  6. H. Jin et al., SnS4(4-), SbS4(3-), and AsS3(3-) Metal Chalcogenide Sur face Ligands: Couplings to Quantum Dots, Electron Transfers, and All-Inorganic Multilayered Quantum Dot Sensitized Solar Cells. J. Am. Chem. Soc. 137, 13827-13835 (2015). https://doi.org/10.1021/jacs.5b05787
  7. M.J. Rak, T. Friscic, A. Moores, Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix. Faraday Discuss 170, 155-167 (2014). https://doi.org/10.1039/C4FD00053F
  8. J. Park, J. Joo, S. G. Kwon, Y. Jang, T. Hyeon, Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chem. Int. Ed. 46, 4630-4660 (2007). https://doi.org/10.1002/anie.200603148
  9. S. Marre et al., Supercritical Continuous-Microflow Synthesis of Narrow Size Distribution Quantum Dots. Adv. mat. 20, 4830-4834 (2008). https://doi.org/10.1002/adma.200801579
  10. Choi, H., Ko, J., Kim, Y. & Jeong, S. Steric-hindrance-driven shape transistion in PbS quantum dots: understanding size-dependent stability. J. Am. Chem. Soc. 135, 5278-5281 (2013). https://doi.org/10.1021/ja400948t
  11. Hwang, G. W. et al. Identifying and eliminating emissive sub-bandgap states in thin films of PbS nanocrystals. Adv. Mater. 27, 4481-4486 (2015). https://doi.org/10.1002/adma.201501156
  12. Gai, Y., Peng, H. & Li, J., Electronic properties of nonstoichiometric PbSe quantum dots from first principles. J. Phys. Chem. C 113, 21506-21511 (2009). https://doi.org/10.1021/jp905868f
  13. Ip, A. H. et al. Hybrid passivated colloidal quantum dot solids. Nature Nanotech. 7, 577-582 (2012). https://doi.org/10.1038/nnano.2012.127
  14. Gi-Hwan, K. et al. Inverted colloidal quantum dot solar cells. Adv. Mater. 26, 20, 3321-3327 (2014)
  15. Gi-Hwan, K. et al. Synergistics photocurrent addition in hybrid quantum dot:bulk heterojunction solar cells, Nano energy 13, 491-499 (2015) https://doi.org/10.1016/j.nanoen.2015.03.025
  16. Gi-Hwan, K. et al. Effects of ionic liquid molecules in hybrid PbS quantum dot-organic solar cells. ACS Appl. Mater. Inter. 5, 1757 (2013)
  17. Gi-Hwan, K. et al. High efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano lett. 15, 11 7691-7696 (2015) https://doi.org/10.1021/acs.nanolett.5b03677