DOI QR코드

DOI QR Code

Optimization of Operating Parameters and Components for Water Electrolysis Using Anion Exchange Membrane

음이온 교환막 알칼리 수전해를 위한 운전 조건 및 구성요소의 최적화

  • Jang, Myeong Je (Surface Technology Department, Korea Institute of Materials Science) ;
  • Won, Mi So (Surface Technology Department, Korea Institute of Materials Science) ;
  • Lee, Kyu Hwan (Surface Technology Department, Korea Institute of Materials Science) ;
  • Choi, Sung Mook (Surface Technology Department, Korea Institute of Materials Science)
  • 장명제 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 원미소 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 이규환 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 최승목 (한국기계연구원 부설 재료연구소 표면기술연구본부)
  • Received : 2016.04.14
  • Accepted : 2016.04.29
  • Published : 2016.04.30

Abstract

The hydrogen has been recognized as a clean, nonpolluting and unlimited energy source that can solve fossil fuel depletion and environmental pollution problems at the same time. Water electrolysis has been the most attractive technology in a way to produce hydrogen because it does not emit any pollutants compared to other method such as natural gas steam reforming and coal gasification etc. In order to improve efficiency and durability of the water electrolysis, comprehensive studies for highly active and stable electrocatalysts have been performed. The platinum group metal (PGM; Pt, Ru, Pd, Rh, etc.) electrocatalysts indicated a higher activity and stability compared with other transition metals in harsh condition such as acid solution. It is necessary to develop inexpensive non-noble metal catalysts such as transition metal oxides because the PGM catalysts is expensive materials with insufficient it's reserves. The optimization of operating parameter and the components is also important factor to develop an efficient water electrolysis cell. In this study, we optimized the operating parameter and components such as the type of AEM and density of gas diffusion layer (GDL) and the temperature/concentration of the electrolyte solution for the anion exchange membrane water electrolysis cell (AEMWEC) with the transition metal oxide alloy anode and cathode electrocatalysts. The maximum current density was $345.8mA/cm^2$ with parameter and component optimization.

Keywords

References

  1. G. W. Crabtree, M. S. Dresselhaus, M. V. Buchanan, The hydrogen economy, Phys Today., 57 (2004) 39-44. https://doi.org/10.1063/1.1878333
  2. A. Filpi, M. Boccia, H. Gasteiger, Pt-free cathode catalyst performance in $H_2/O_2$ anion-exchange membrane fuel cells (AMFCs), ECS Transactions., 16 (2008) 1835-1845. https://doi.org/10.1149/1.2982024
  3. M. Faraj, E. Elia, M. Boccia, A. Filpi, A. Pucci, F. Ciardelli, New anion conducting membranes based on functionalized styrene-butadiene-styrene triblock copolymer for fuel cells applications, Journal of Polymer Science Part A: Polymer Chemistry., 49 (2011) 3437-3447. https://doi.org/10.1002/pola.24781
  4. M. Piana, M. Boccia, A. Filpi, E. Flammia, H. A. Miller, M. Orsini, F. Salusti, S. Santiccioli, F. Ciardelli, A. Pucci, $H_2$/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst, J Power Sources., 195 (2010) 5875-5881. https://doi.org/10.1016/j.jpowsour.2009.12.085
  5. Y. Leng, G. Chen, A. J. Mendoza, T. B. Tighe, M. A. Hickner, C. Wang, Solid-state water electrolysis with an alkaline membrane, J Am Chem Soc., 134 (2012) 9054-9057. https://doi.org/10.1021/ja302439z
  6. C. C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Highly Efficient Platinum Group Metal Free Based Membrane-Electrode Assembly for Anion Exchange Membrane Water Electrolysis, Angewandte Chemie. 126 (2014) 1402-1405. https://doi.org/10.1002/ange.201308099
  7. Thomas S, Visakh P. Handbook of Engineering and Speciality Thermoplastics: Volume 3: Polyethers and Polyesters, First Ed, Wiley-Scrivener (2011) 55.
  8. S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros, Advanced alkaline water electrolysis, Electrochim Acta., 82 (2012) 384-391. https://doi.org/10.1016/j.electacta.2012.05.011
  9. S. Chempath, J. M. Boncella, L. R. Pratt, N. Henson, B. S. Pivovar, Density functional theory study of degradation of tetraalkylammonium hydroxides, The Journal of Physical Chemistry C., 114 (2010) 11977-11983.
  10. K. S. Moon, D. W. Park, The characteristics of hydrogen production according to electrode materials in alkaline water electrolysis, Journal of Energy Engineering., 24 (2015) 34-39.
  11. H. S. Choi, D. S. Yim, C. H. Rhyu, J. C Kim, G. J. Hwang, Study on the Electrode Characteristics for the Alkaline Water Electrolysis, Trans. of the Korean Hydrogen & New Energy Society., 23 (2012) 117-124. https://doi.org/10.7316/KHNES.2012.23.2.117
  12. A. Appleby, G. Crepy, J. Jacquelin, High efficiency water electrolysis in alkaline solution, Int J Hydrogen Energy., 3 (1978) 21-37. https://doi.org/10.1016/0360-3199(78)90054-X
  13. S. Adhikari, J. Ai, K. R. Hebert, K. Ho, C. Wang, Hydrogen in aluminum during alkaline corrosion, Electrochim Acta., 55 (2010) 5326-5331. https://doi.org/10.1016/j.electacta.2010.04.076
  14. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, First Ed, Pergamon Press, Oxford (1966), 312.