DOI QR코드

DOI QR Code

Kinetics of NO Reduction with Copper Containing Bamboo Activated Carbon

구리 촉매 담지 대나무 활성탄의 NO 가스 반응 특성

  • Bak, Young-Cheol (Department of Chemical Engineering.Engineering Research Institute, Gyeongsang National University) ;
  • Choi, Joo-Hong (Department of Chemical Engineering.Engineering Research Institute, Gyeongsang National University)
  • Received : 2015.04.06
  • Accepted : 2016.03.14
  • Published : 2016.03.31

Abstract

The metal-impregnated activated carbon was produced from bamboo activated carbon by soaking method of metal nitrate solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. The specific surface area and pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use as de-NOx agents of used activated carbon. Carbon-NO reactions were carried out with respect to reaction temperature ($20^{\circ}C{\sim}850^{\circ}C$) and NO gas partial pressure (0.1 kPa~1.8 kPa). As results, the specific volume and surface area of bamboo activated carbon impregnated with copper were decreased with increasing Cu amounts of activated carbon. In NO reaction, the reaction rate of Cu impregnated bamboo activated carbon[BA(Cu)] was promoted to compare with that of bamboo activated carbon[BA]. But the reaction rate of Ag impregnated bamboo activated carbon[BA(Ag)] was retarded. Measured reaction orders of NO concentration and activation energy were 0.63[BA], 0.92[BA(Cu)], and 80.5 kJ/mol[BA], 48.5 kJ/mol[BA(Cu)], 66.4 kJ/mol[BA(Ag)], respectively.

대나무를 원료로 탄화 및 활성화 온도 $900^{\circ}C$에서 대나무 활성탄을 만들고, 이 대나무 활성탄에 금속 구리와 금속 은을 담지시켜 금속 담지 대나무 활성탄을 제조하였다. 제조된 금속 담지 활성탄의 비표면적 및 세공분포 등의 물리적 특성을 분석하였다. 또한 폐 대나무 활성탄의 재활용을 위하여 대나무활성탄과 NO 기체의 반응 특성 실험을 열중량분석기를 사용하여 반응 온도 $20{\sim}850^{\circ}C$, NO 농도 0.1~1.8 kPa 변화 조건에서 하였다. 실험 결과, 대나무 활성탄 특성 분석에서 구리 담지 대나무 활성탄에서는 구리 담지량이 증가할수록 세공 부피와 표면적이 감소하였다. 비등온과 등온 NO 반응에서는 전체적으로 구리 담지 대나무 활성탄[BA(Cu)]이 대나무 활성탄[BA]에 비하여 반응속도가 향상되는 것을 볼 수 있었다. 그러나 은 담지 대나무 활성탄[BA(Ag)]은 반응이 억제되는 것을 볼 수 있었다. NO 반응에서의 활성화에너지는 80.5 kJ/mol[BA], 48.5 kJ/mol[BA(Cu)], 66.4 kJ/mol[BA(Ag)]로 나타났고, NO 분압에 대한 반응차수는 0.63[BA], 0.92[BA(Cu)]이었다.

Keywords

References

  1. Yu, M., Kang, J. and Chang, Y., "As(III) oxidation and phenol adsorption by the activated carbon impregnated with Mn oxide," J. Korean Soc. Environ. Eng., 30(4), 423-429(2008).
  2. Shin, S., Kang, J. and Song, J., "Removals of formadehyde by silver nano particles attached on the surface of activated carbon," J. Korean Soc. Environ. Eng., 32(10), 936-941(2010).
  3. Lee, S. and Park, Y., "Adsorption characteristics of H2 on the impregnated granular activated carbon with diethanolamine," J. Korean Soc. Environ. Eng., 25(5), 567-573(2003).
  4. Son, H., Choi, K. and Kim, S., "Removal characteristics of natural organic matters in activated carbon and biofiltration process," J. Korean Soc. Environ. Eng., 29(2), 205-213(2007).
  5. Bak, Y. C., Cho, K. J. and Choi, J. H., "Production and CO2 adsorption characteristics of activated carbon from bamboo by CO2 activation method," Korean Chem. Eng. Res., 43(1), 146-152(2005).
  6. Sloss, L. L., "Nitrogen oxides control technology fact book," Noyes Data Corporation, N. J., pp. 38-53(1992).
  7. Feng, B., Liu, H., Yuan, J., Lin, Z. and Liu, D., "Mechanisms of N2O formation from char combustion," Energy & Fuel, 10, 203-208(1996). https://doi.org/10.1021/ef9500898
  8. Burch, T. E., Tillman, F. R., Chen, W., Lester, T. W., Conway, R. B. and Sterling, A. M., "Partitioning of nitrogenous species in the fuel-rich stage of reburning," Energy & Fuels, 5, 231-241(1991). https://doi.org/10.1021/ef00026a001
  9. Park, H. M., Park, Y. K. and Jeon, J. K., "De NOx performance of catalysts regenerated by surfactant solution," Korean Chem. Eng. Res., 49(6), 739-744(2011). https://doi.org/10.9713/kcer.2011.49.6.739
  10. Yoon, K. S. and Ryu, S. K., "Removal of NO using surface modified activated carbon fiber(ACF) by impregnation and heat-treatmentof propellant waste," The Korean J. Chem. Eng. Fuels, 27(6), 1882-1886(2010). https://doi.org/10.1007/s11814-010-0294-4
  11. Furusawa, T., Tsunoda, M., Tsujimura, M. and Adschri, T., "Nitric oxide reduction by char and carbon monooxide," Fuel, 64, 1306-1309(1985). https://doi.org/10.1016/0016-2361(85)90193-0
  12. Chan, L. K., Sarofim, A. F. and Beer, J. M., "Kinetics of the NO-carbon reaction at fluidized-bed combustor conditions," Combustion and Flame, 52, 37-45(1983). https://doi.org/10.1016/0010-2180(83)90119-0
  13. Suzuki, T., Kyotani, T. and Tomita, A., "Study on the carbonnitric oxide reaction in the presence of oxygen," Ind. Eng. Chem. Res., 33, 2840-2845(1994). https://doi.org/10.1021/ie00035a038
  14. Teng, H., Suuberg, E. M. and Calo, J. M., "Studies on the reduction of nitric oxide by carbon: the NO-carbon gasification reaction," Energy & Fuels, 6, 398-406(1992). https://doi.org/10.1021/ef00034a008
  15. DeGroot, W. F. and Richards, G. N., "Gasification of cellulosic chars in oxgen and in NO," Carbon, 29(2), 179-183(1991). https://doi.org/10.1016/0008-6223(91)90068-T
  16. Teng, H., Lin, H. and Hsieh, Y., "Thermogravimetric studies on the global kinetics of carbon gasification in nitrous oxide," Ind. Eng. Chem. Res., 36, 523-529(1997). https://doi.org/10.1021/ie960582m
  17. Aarna, I. and Suuberg, M., "A review of the kinetics of the nitric oxide-carbon reaction," Fuel, 76, 475-486(1997). https://doi.org/10.1016/S0016-2361(96)00212-8
  18. Park, S. J., Kim, B. J. and Kawasaki, J., "Studies on textural properties of activated carbon fibers containing silver metal and their NO removal test," Korean Chem. Eng. Res., 41(5), 649-654(2003).
  19. Bak, Y. C., "Intrinsic reactivity of NO and N2O gas with Korean anthracites," Energy Engg. J., 8(2), 279-284(1999).
  20. Bak, Y. C., Choi, J. H. and Lee, G., "Production of silver impregnated bamboo activated carbon and reactivity with NO gases," Korean Chem. Eng. Res., 52(6), 807-813(2014). https://doi.org/10.9713/kcer.2014.52.6.807
  21. Kim, J., Hong, I. and Ha, B., "Reduction and oxidation of NO over activated carbon," J. Korean Soc. Environ. Eng., 21(3), 595-604(1999).
  22. Bak, Y. C., Yang, H. S. and Son, J. E., "Isothermal coal char combustion and char-steam gasification reactivity," Korean Chem. Eng. Res., 29(3), 323-335(1991).
  23. Ruckenstein, E. and Hu, Y. H., "Catalytic reduction of No over Cu/C," Ind. Eng. Chem. Res., 36, 2533-2536(1997). https://doi.org/10.1021/ie960904m
  24. Illan-Gomaz, M. J., Linares-Solano, A. and Salinas-Martinez de Lecea, C., "NO reduction by activated carbons. 6. Catalysis by transition metals," Energy & Fuels, 9, 976-983(1995). https://doi.org/10.1021/ef00054a007
  25. Chu, X. and Schmidt, L. D., "Intrinsic rates of NOx-carbon reactions," Ind. Eng. Chem. Res., 32, 1359-1366(1993). https://doi.org/10.1021/ie00019a010
  26. Richthofen, A. V., Wendel, E. and Neuschutz, D., "Kinetics of NO reduction with pure and potassium-doped carbon," Fresenius J. Anal. Chem., 346, 261-264(1993). https://doi.org/10.1007/BF00321427
  27. Park, S. J., Jang, Y. S. and Kawasaki, J., "NO adsorption and catalytic reduction mechanism of electrolytically copper-plated activated carbon fibers," Korean Chem. Eng. Res., 40(6), 664-668(2002).