DOI QR코드

DOI QR Code

미생물 전기화학 기술이 설치된 단일 혐기성소화조에서 유기성폐기물로부터 메탄생성

The Methane Production from Organic Waste on Single Anaerobic Digester Equipped with MET (Microbial Electrochemical Technology)

  • Park, Jungyu (Department of Environmental Engineering, Chungbuk National University) ;
  • Tian, Dongjie (Jeongbong, Ltd.) ;
  • Lee, Beom (Department of Environmental Engineering, Chungbuk National University) ;
  • Jun, Hangbae (Department of Environmental Engineering, Chungbuk National University)
  • 투고 : 2016.02.01
  • 심사 : 2016.03.18
  • 발행 : 2016.04.30

초록

Glucose ($C_6H_{12}O_6$)의 이론적인 최대 메탄수율은 표준상태(1 atm, $0^{\circ}C$)를 기준으로 0.35 L $CH_4/g$ COD이지만, 전통적인 혐기성소화조에서 유기물이 메탄으로 전환되는 양은 연구의 방법이나 유기물의 종류에 따라 매우 다양하게 보고되고 있으며, 대부분의 연구실 규모 실험에서 안정화 후 메탄 수율은 0.35 L $CH_4/g$ COD 이하로 나타난다. 최근, 미생물 전기화학 기술(Microbial Electrochemical Technology, MET)은 지속가능한 신재생에너지 생산 기술로서 큰 주목을 받고 있으며, MET를 혐기성소화조에 적용할 경우 고농도의 유기성폐기물의 빠른 분해가 가능할 뿐만 아니라 전기화학적인 반응에 의해 휘발성지방산(VFAs)이나 독성물질, 생분해 불가능한 물질까지도 분해가 가능하며, 소화조 내 미생물의 활성을 높이고 바이오가스의 생산량을 극대화 할 수 있다고 알려져 있다. 본 연구에서는 MET가 혐기성소화의 메탄발생에 미치는 영향에 대하여 연구하기 위해 음식물 탈리액과 하수슬러지의 원소조성에 따른 이론적인 최대 메탄수율을 분석하였으며, BMP (Biochemical Methane Potential) 실험과 연속식 실험을 통한 메탄수율의 특성을 평가하였다. 그 결과, MET가 적용된 혐기성소화에서의 메탄수율은 일반적인 혐기성소화조에 비하여 기질에 따라 2-3배 정도 높았으며, 이론적인 최대 메탄수율에 미치지는 못하였으나 일부는 거의 근접한 결과가 도출되었다. 또한, 일반적인 혐기성소화조와 MET가 적용된 혐기성소화조의 안정화 후 바이오가스의 조성은 거의 유사하게 나타났다. 결과적으로, MET가 혐기성소화조의 유기물 제거효율을 향상시켜 메탄발생량을 증가시킨 것으로 나타났으며, 향후 추가적인 연구를 통하여 MET에서 메탄발생 메카니즘이 명확히 규명되어야 할 것이다.

Theoretical maximum methane yield of glucose at STP (1 atm, $0^{\circ}C$) is 0.35 L $CH_4/g$ COD. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. A wide range of them have been reported according to experiments methods and types of organic matters. Recent year, a MET (Microbial electrochemical technology) is a promising technology for producing sustainable bio energies from AD via rapid degradation of high concentration organic wastes, VFAs (Volatile Fatty Acids), toxic materials and non-degradable organic matters with electrochemical reactions. In this study, methane yields of food waste leachate and sewage waste sludge were evaluated by using BMP (Biochemical Methane Potential) and continuous AD tests. As the results, methane production volume from the anaerobic digester equipped with MET (AD + MET) was higher than conventional AD in the ratio of 2 to 3 times. The actual methane yields from all experiments were lower than those of theoretical value of glucose. The methane yield, however, from the AD + MET occurred similar to the theoretical one. Moreover, biogas compositions of AD and AD + MET were similar. Consequently, methane production from anaerobic digester with MET increased from the result of higher organic removal efficiency, while, further researches should be required for investigating methane production mechanisms in the anaerobic digester with MET.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Guo, X., Liu, J. and Xiao, B., "Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells," Int. J. Hydrogen Energy, 38(3), 1342-1347(2013). https://doi.org/10.1016/j.ijhydene.2012.11.087
  2. Appels, L., Baeyens, J., Degreve, J. and Dewil, R., "Principles and potential of the anaerobic digestion of waste-activated sludge," Prog. Energy Combust. Sci., 34(6), 755-781(2008). https://doi.org/10.1016/j.pecs.2008.06.002
  3. Zhang, Y. and Angelidaki, I., "Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges," Water Res., 56, 11-25(2014). https://doi.org/10.1016/j.watres.2014.02.031
  4. Zhang, J., Zhang, Y., Quan, X., Chen, S. and Afzal, S., "Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions," Bioresour. Technol., 136, 273-280(2013). https://doi.org/10.1016/j.biortech.2013.02.103
  5. Cheng, S. and Logan, B. E., "Sustainable and efficient biohydrogen production via electrohydrogenesis," PNAS, 104(47), 18871-18873(2007). https://doi.org/10.1073/pnas.0706379104
  6. Wang, A., Liu, W., Ren, N., Cheng, H. and Lee, D.-J., "Reduced internal resistance of microbial electrolysis cell as factor of configuration and stuffing with granular activated carbon," Int. J. Hydrogen Energy, 35(24), 13448-13492(2010).
  7. Michaud, S., Bernet, N., Buffiere, P., Roustan, M. and Moletta, R., "Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors," Water Res., 36(5), 1385-1391(2002). https://doi.org/10.1016/S0043-1354(01)00338-4
  8. Matt, E. G., Katherine, D. M. and Roderick, I. M., "Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids," Biotechnol. Bioeng., 57(3), 342-355(1998). https://doi.org/10.1002/(SICI)1097-0290(19980205)57:3<342::AID-BIT11>3.0.CO;2-I
  9. Feng, Y., Zhang, Y., Chen, S. and Quan, X., "Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode," Chem. Eng. J., 259, 787-794(2015). https://doi.org/10.1016/j.cej.2014.08.048
  10. Kroeker, E. J., Schulte, D. D., Sparling, A. B. and Lapp, H. M., "Anaerobic treatment process stability," Water Pollut. Control Fed., 51(4), 718-727(1979).
  11. Lauwers, A. M., Heinen, W., Gorris, L. G. M. and van der Drift, C., "Early stage in biofilm development in methanogenic fluidized bed reactors," Appl. Microbiol. Biotechnol., 33(3), 352-358(1990). https://doi.org/10.1007/BF00164535
  12. Yin, Q., Zhu, X., Zhan, G., Bo, T., Yang, Y., Tao, Y., He, X., Li, D. and Yan, Z., "Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina," J. Environ. Sci., JES-00496(2015).
  13. Nikolaos, X. and Valeria, M., "Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production," INT J Hydrogen Energy, 39(36), 21864-21875(2014). https://doi.org/10.1016/j.ijhydene.2014.05.038
  14. Bo, T., Zhu, X., Zhang, L., Tao, Y., He, X., Li, D. and Yan, Z., "A new upgraded biogas production process: Coupling microbialelectrolysis cell and anaerobic digestion in singlechamber, barrel-shape stainless steel reactor," Electrochem. Communi., 45, 67-70(2014). https://doi.org/10.1016/j.elecom.2014.05.026
  15. Geelhoed J. S. and Stams A. J., "Electricity-assisted biological hydrogen production from acetate by geobacter sulfurreducens," Environ. Sci. Technol., 45(2), 815-820(2011). https://doi.org/10.1021/es102842p
  16. Asrinari Di San Marzano, C.-M., Binot, R., Bol, T., Fropiat, J.-L., Hutschemakers, J., Melchior, J.-L., Perez, I. Naveau, H. and Nyms, E.-J., "Volatile fatty acids, an important state parameter for the control of the reliability and the productivities of methane anaerobic digestions," Biomass, 1(1), 47-59(1981). https://doi.org/10.1016/0144-4565(81)90014-7
  17. Zhan, G., Zhang, L., Li, D., Su, W., Tao, Y. and Qian, J., "Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell," Bioresour. Technol., 116, 271-277(2012). https://doi.org/10.1016/j.biortech.2012.02.131
  18. Chae, K. J., Jang, Am, Yim, S. K. and Kim, I. S., "The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure," Bioresour. Technol., 99(1), 1-6(2008). https://doi.org/10.1016/j.biortech.2006.11.063
  19. Forester-Carneiro, T., Perez, M. and Rpmero, L. I., "Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste," Bioresour. Technol., 99(15), 6994-7002(2008). https://doi.org/10.1016/j.biortech.2008.01.018
  20. Angelidaki, I. and Ahring, B. K., "Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure," Water Sci. Technol., 41(3), 189-194(2000).
  21. Najafpour a., G. D., Zinatizadeh, A. A. L., Mohamed, A. R., Hasnain Isa, M. and Nasrollahzadeh, H., "High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor," Proc. Biochem., 41(2), 370-379(2006). https://doi.org/10.1016/j.procbio.2005.06.031
  22. Rabelo, S. C., Carrere, H., Maciel Filho, R. and Costa, A. C., "Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept," Bioresour. Technol., 102(17), 7887-7895(2011). https://doi.org/10.1016/j.biortech.2011.05.081
  23. Talarposhti, A. M., Donnelly, T. and Anderson, G. K., "Colour removal from a Simulated dye wastewater using a twophase anaerobic packed bed reactor," Water Res., 35(2), 425-432(2001). https://doi.org/10.1016/S0043-1354(00)00280-3
  24. Angelidaki, I. and Sanders, W., "Assessment of the anaerobic biodegradability of macropollutants," Environ. Sci. Biotechnol., 3(2), 117-129(2004). https://doi.org/10.1007/s11157-004-2502-3
  25. Hansen, K. H., Angelidaki, I. and Ahring, B. K., "Anaerobic digestion of Swine manure: Inhibition by ammonia," Water Res., 32(1), 5-12(1998). https://doi.org/10.1016/S0043-1354(97)00201-7
  26. Ehimen, E. A., Holm-Nielsen, J. B., Poulsen, M. and Boelsmand, J. E., "Influence of different pretreatment routes on the anaerobic digestion of a filamentous algae," Renew. Energy, 50, 476-480(2013). https://doi.org/10.1016/j.renene.2012.06.064
  27. Gough, H. L., Nelsen, D., Muller, C. and Ferguson, J., "Enhanced Methane Generation During Theromophilic Co-Digestion of Confectionary Waste and Grease-Trap Fats and Oils with Municipal Wastewater Sludge," Water Environ. Res., 85(2), 175-183(2013). https://doi.org/10.2175/106143012X13418552642128
  28. Zhou, P., Elbeshbishy, E. and Nakhia, G., "Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids," Bioresour. Technol., 130, 710-718(2012).
  29. Zhang, C., Xiao, G., Peng, L., Su, H. and Tan, T., "The Anaerobic Co-digestion of Food Waste and Cattle Manure," Bioresour. Technol., 129, 170-176(2012).
  30. Tartakovsky, B., Metha, P., Bourque, J. S. and Guiot, S. R., "Electrolysis-enhanced anaerobic digestion of wastewater," Bioresour. Technol., 102, 5685-5691(2011). https://doi.org/10.1016/j.biortech.2011.02.097
  31. Kayhanian, M. and Hardy, S., "The impact of four design parameters on the performance of a high-solids anaerobic digestion of municipal solid waste for fuel gas production," Environ. Technol., 15(6), 557-567(1994). https://doi.org/10.1080/09593339409385461
  32. Kim, H. W., Han, S. K. and Shin, H. S., "The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge," Waste Manage. Res., 21(6), 515-526(2003). https://doi.org/10.1177/0734242X0302100604
  33. la Cour Jansen, J., Gruvberger, C., Hanner, N., Aspegren, H. and Svard, A., "Digestion of sludge and organic waste in the sustainability concept for Malmo, Sweden," Water Sci. Technol., 49(10), 163-169(2004).
  34. Standard methods for the examination of water and wastewater, APHA(1995), 19th Edition.