DOI QR코드

DOI QR Code

Preparation of PVdF Composite Nanofiber Membrane by Using Manganese-Iron Oxide and Characterization of its Arsenic Removal

망간-철 산화물을 이용한 PVdF 나노섬유복합막의 제조 및 비소 제거 특성 평가

  • Yun, Jaehan (Department of Chemical Engineering, Keimyung University) ;
  • Jang, Wongi (Department of Chemical Engineering, Keimyung University) ;
  • Park, Yeji (Department of Chemical Engineering, Keimyung University) ;
  • Lee, Junghun (Department of Chemical Engineering, Keimyung University) ;
  • Byun, Hongsik (Department of Chemical Engineering, Keimyung University)
  • Received : 2016.04.11
  • Accepted : 2016.04.26
  • Published : 2016.04.30

Abstract

This study described a synthesis of MF having a arsenic removal characteristics and the fundamental research was performed about the simultaneous removal system of both As(III) and As(V) ions with the composite nanofiber membrane (PMF) based on PVdF and MF materials for the water-treatment application. From the TEM analysis, the shape and structure of MF materials was investigated. The mechanical strength, pore-size, contact angle and water-flux analysis for the PMF was performed to investigate the possibility of utilizing as a water treatment membrane. From these results, the PMF11 showed the highest value of mechanical strength ($232.7kgf/cm^2$) and the pore-diameter of composite membrane was reduced by introducing the MF materials. In particular, their pore diameter decreased with an increase of iron oxide composition ratio. The water flux value of PMF was improved about 10 to 60% compared with that of neat PVdF nanofiber membranes. From the arsenic removal characterization of prepared MF materials and PMF, it was shown the simultaneous removal characteristics of both As(III) and (V) ions, and the MF01, in particular, showed the highest adsorption-removal rate of 93% As(III) and 68% As(V), respectively. From these results, prepared MF materials and PMF have shown a great potential to be utilized for the fundamental study to improve the functionality of water treatment membrane.

본 연구에서는 비소(arsenic, As) 제거 특성을 가진 망간-철 산화물(manganese-iron oxide, MF)을 제조하고, 이를 poly vinylidene fluoride (PVdF)와 복합화를 진행하여 As(III)와 As(V)를 동시에 제거가 가능한 수처리용 나노섬유복합막(polymer nanofiber membrane with Mn-Fe, PMF) 제조에 관한 기초 연구를 진행하였다. Transmission electron microscope(TEM) 분석을 통해 MF 소재의 형상 및 구조를 확인하였으며, PMF 복합막의 수처리용 분리막으로의 활용가능성을 조사하기 위하여 기계적 강도, 기공크기, 접촉각 및 수투과도 분석을 진행하였다. 측정결과로부터 망간과 철 비율이 같은 PMF11 복합막의 기계적 강도가 가장 높은 결과값($232.7kgf/cm^2$)을 나타낸 것을 확인할 수 있었다. 또한, MF 소재의 도입에 따라 기공 크기가 점차 줄어드는 경향성을 확인할 수 있었으며, 특히, 철 산화물의 조성비가 증가할수록 기공크기가 감소하는 경향성을 보여주었다. 수투과도 측정결과 MF 소재의 도입에 따라 PVdF 나노섬유막에 비해 약 10~60% 이상 향상되는 결과를 나타내었다. 제조된 MF 소재 및 PMF 복합막의 비소 제거 특성평가를 통해 As(III)와 (V)의 동시 제거 가능하며, 특히, MF01 샘플의 경우 As(III)와 (V)에 각각 93, 68%의 가장 높은 흡착제거율을 나타내었다. 따라서 본 연구에서는 제조된 MF소재 및 PMF 복합막을 통해 수처리용 분리막의 기능성 향상을 위한 기초연구 자료로 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. S. B. Bang, E. Y. Choe, and K. W. Kim, "Treatment technologies for arsenic removal from groundwater: review paper", Econ. Environ. Geol., 38, 599 (2005).
  2. H. C. Yang, "Removal of arsenic by Mn-substituted iron oxyhydroxide from aqueous solution", Master Degree Dissertation, Sejong University, Seoul (2014).
  3. G. H. Song, "Optimal conditions of iron-coated sand and manganese-coated sand preparation and arsenic removal", Doctor of Philosophy Dissertation, Kwangwoon University, Seoul (2006).
  4. Y. Y. Chang, K. S. Kim, K, H. Song, and J. K. Yang, "Optimal conditions for As(III) removal by filtration system packed with different ratio of iron-coated sand and manganese-coated sand", J. Korean Soc. Environ. Eng., 28, 1186 (2006).
  5. V. L. Chandra, J. S. Park, Y. Chun, J. W. Lee, I. C. Hwang, and K. S. Kim, "Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal", ACS Nano, 4, 3979 (2010). https://doi.org/10.1021/nn1008897
  6. S. W. Nam, K. S. Jang, and K. H. Youm, "Recycling of acidic etching waste solution containing heavy metals by nanofiltration (II) : Dead-end nanofiltration of PCB etching waste solution containing copper ion", Membr. J., 23, 92 (2013).
  7. S. R. Ryu, "Adsorption of As(III) and As(V) in groundwater by Fe-Mn binary oxides impregnated granular activated carbon (IMIGAC)", Master Degree Dissertation, Chonbuk National University, Chonbuk (2016).
  8. S. Kumar, R. R. Nair, P. B. Pillai, S. N. Gupta, M. A. R. Iyengar, and A. K. Sood, "Graphene oxide-$MnFe_2O_4$ magnetic nanohybrids for efficient removal of lead and arsenic form water", ACS Appl. Mater. Interfaces, 6, 17426 (2014). https://doi.org/10.1021/am504826q
  9. H. M. Jung, "Preparation and characterization of graphene composite membrane for water treatment", Master Degree Dissertation, Keimyung University, Daegu (2014).
  10. W. G. Jang, J. H. Yun, and H. S. Byun, "Preparation of PAN nanofiber composite membrane with $Fe_3O_4$ functionalized graphene oxide and its application as a water treatment membrane", Membr. J., 24, 151 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.151
  11. K. C. Kim, T. U. Kim, J. K. Lee, J. W. Ahn, S. H. Park, and H. M. Kim, "Performance evaluation of PAN nanofiber air filter fabricated by electrospinning", Trans. Korean Soc. Mech. Eng., 39, 885 (2015).
  12. Y. J. Yao, Y. M. Cai, F. Lu, F. Y. Wei, X. Y. Wang, and S. B. Wang, "Magnetic recoverable $MnFe_2O_4$ and $MnFe_2O_4$-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants", J. Hazard. Mater., 270, 61 (2014). https://doi.org/10.1016/j.jhazmat.2014.01.027
  13. I. H. Won, W. G. Jang, K. Y. Chung, and H. S. Byun, "Preparation of PVdF/GO composite nanofibrous flat membrane and its permeation characteristics in activated sludge", Membr. J., 25, 67 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.67
  14. J. M. Lee, J. S. Kim, S. K. Hong, J. J. Lee, H. C. Ahn, W. I. Cho, and S. I. Mho, "Electrochemical characteristics of $LiMn_2O_4$, cathodes synthesized from various precursors of manganese oxide and manganese hydroxide", J. Korean Electrochem. Soc., 15, 172 (2012). https://doi.org/10.5229/JKES.2012.15.3.172
  15. S. S. Shin, S. H. Park, Y. S. Lee, M. J. Jung, and H. K. Choi, "Preparation and mechanical properties of nylon/clay nanocomposite", J. Korean Soc. Ind. Appl., 12, 5 (2009).
  16. H. D. Lee, Y. H. Cho, and H. B. Park, "Current research trends in water treatment membranes based on nano materials and nano technologies" Membr. J., 23, 101 (2013).
  17. S. C. Park, H. G. Kim, and K. E. Min, "Effect of MMT on anti-water absorption of polyamide/MMT nanocomposites", Polymer(Korea), 37, 113 (2012).
  18. J. H. Kim, O. J. Lee, F. A. Sheikh, H. W. Ju, and B. M. Moon, "Fabrication and characterization of PCL/$TiO_2$ nanoparticle 3D scaffold", Polymer(Korea), 38, 150 (2013).