DOI QR코드

DOI QR Code

The Study on In-situ Measurement of Hydrogen Permeability through Polymer Electrolyte Membranes for Fuel Cells

연료전지용 고분자전해질막의 실시간 수소 투과도 측정법 연구

  • 임윤재 (단국대학교 융합기술대학 에너지공학과) ;
  • 이창현 (단국대학교 융합기술대학 에너지공학과)
  • Received : 2016.04.25
  • Accepted : 2016.04.26
  • Published : 2016.04.30

Abstract

Polymer electrolyte membranes (PEMs) are key components to determine electrochemical fuel cell performances, in addition to electrode materials. The PEMs need to satisfy selective transport behaviors to small molecules including gases and protons; the PEMs have to transport protons as fast as possible, while they should act as hydrogen barriers, since the permeated gas induces the thermal degradation of cathode catalyst, resulting in rapid electrochemical reduction. To date, limited tools have been used to measure how fast hydrogen gas permeates through PEMs (e.g., Constant volume/variable Pressure (time-lag) method). However, most of the measurements are conducted under vacuum where PEMs are fully dried. Otherwise, the obtained hydrogen permeance is easily changeable, which causes the measurement errors to be large. In this study, hydrogen permeation properties through Nafion212 used as a standard PEM are evaluated using an in-situ measurement system in which both temperature and humidity are controlled at the same time.

고분자전해질막은 전극 이외에 전기 화학 연료전지의 성능을 결정하는 중요한 요소이다. 고분자전해질막은 가스나 양성자 등의 작은 분자를 선택적으로 수송해야 한다. 고분자전해질막을 투과한 가스는 급속히 전기 화학적 환원을 발생시켜 음극 촉매의 열화를 유발하기 때문에 수소 장벽으로 작동해야 하며 가능한 한 빨리 양성자를 이동시켜야 한다. 지금까지 고분자전해질막의 수소 기체 투과도를 측정하는데 한정된 방법(예 : Constant volume/variable pressure (Time-lag)법)을 사용했다. 그러나 측정의 대부분은 고분자전해질막은 건조된 진공 하에서 이루어진다. 그렇지 않으면 얻어진 수소 투과도는 측정 오차가 커지는 원인이 되기 쉽다. 이 연구에서는 일반적으로 고분자전해질막으로 사용되는 Nafion212의 수소 가스 투과 특성을 온도와 습도가 동시에 제어되는 in-situ 측정 시스템을 이용하여 평가하였다.

Keywords

References

  1. M. L. Perry and T. F. Fuller, "A historical perspective of fuel cell technology in the 20th century", J. Electrochem Soc., 149, S59 (2002). https://doi.org/10.1149/1.1488651
  2. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, "A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research", Appl. Energy, 88, 981 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030
  3. D. Dunwoody and J. Leddy, "Proton exchange membranes: the view forward and back", Electrochem Soc. Interface, 14, 37 (2005).
  4. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, and D. Wood, "Scientific aspects of polymer electrolyte fuel cell durability and degradation", Chem. Rev., 107, 3904 (2007). https://doi.org/10.1021/cr050182l
  5. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  6. A. Collier, H. Wang, X. Z. Yuan, J. Zhang, and D. P. Wilkinson, "Degradation of polymer electrolyte membranes", Int. J. Hydrogen Energy, 31, 1838 (2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  7. H. Lee, T. Kim, W. Sim, S. Kim, B. Ahn, T. Lim, and K. Park, "Pinhole formation in PEMFC membrane after electrochemical degradation and wet/dry cycling test", Korean J. Chem. Eng., 28, 487 (2011). https://doi.org/10.1007/s11814-010-0381-6
  8. K. Broka and P. Ekdunge, "Oxygen and hydrogen permeation properties and water uptake of Nafion$^{(R)}$117 membrane and recast film for PEM fuel cell", J. Appl. Electrochem, 27, 117 (1997). https://doi.org/10.1023/A:1018469520562
  9. A. Z. Weber, "Gas-crossover and membrane-pinhole effects in polymer-electrolyte fuel cells", J. Electrochem Soc., 155, B521 (2008). https://doi.org/10.1149/1.2898130
  10. D. Pye, H. Hoehn, and M. Panar, "Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus", J. Appl. Polym. Sci., 20, 1921 (1976). https://doi.org/10.1002/app.1976.070200719
  11. Y. Kim, J. Lee, H. Park, and Y. Lee, "Hydrogen separation of carbon molecular sieve membranes derived from polyimides having decomposable side groups", Membr. J., 14, 99 (2004).
  12. D. Kim and S. Nam, "Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
  13. J. Chen, L. S. Loo, and K. Wang, "A novel time lag method to measure the permeation of vapor-gas mixtures", J. Membr. Sep. Technol., 1, 94 (2012).
  14. C. H. Lee, S. Y. Lee, Y. M. Lee, S. Y. Lee, J. W. Rhim, O. Lane, and J. E. McGrath, "Surface-fluorinated proton-exchange membrane with high electrochemical durability for direct methanol fuel cells", ACS Appl. Mater. Interfaces, 1, 1113 (2009). https://doi.org/10.1021/am900067q
  15. D. R. Paul and Y. P. Yampol'skii, "Polymeric gas separation membranes", CRC press (1993).
  16. F. Barbir, "PEM fuel cells: theory and practice", Academic Press, San Diego (2012).
  17. S. Stern, "The "barrer" permeability unit", J. Polym. Sci. A-2: Polym. Phys., 6, 1933 (1968). https://doi.org/10.1002/pol.1968.160061108