DOI QR코드

DOI QR Code

Perfluorinated Sulfonic Acid Ionomer Membranes for Valued Chemical Production

과불소계 술폰화 이오노머막을 이용한 고부가가치 화학품 제조

  • Received : 2016.04.25
  • Accepted : 2016.04.27
  • Published : 2016.04.30

Abstract

The Chlor-alkali (CA) membrane cell is a major electrolysis system to produce valued chemicals such as chlorine gas and sodium hydroxide. The CA membrane process has been attracted in the industries, since it has relatively low energy consumption when compared with other CA processes. The key component in CA process is perfluorinated sulfonic acid ionomer membranes, which provide ion-selectivity and barrier properties to produced gases. Unfortunately, there is limited information to determine which factors should be satisfied for CA applications. In this study, the influences of PFSA membranes on CA performances are disclosed. They include ion transport behaviors, gas evolution capability, and chemical/electrochemical resistances under CA operation conditions.

클로알칼리(CA) 멤브레인 셀은 대표적인 염수전해 시스템으로서 가성소다와 염소를 생산하는 염수전기분해 프로세스이다. CA 멤브레인 프로세스는 타 공정에 비해 낮은 에너지 소모량을 가져 CA산업에서 가장 선호되는 공정이다. CA프로세스에 사용되는 과불소계 술폰화 이오노머막은 CA프로세스의 핵심구성 요소이며, 양이온을 선택적으로 이동시키는 역할 및 배리어적인 역할을 제공한다. 하지만, CA 구동을 위해 충족되어야 하는 요소들에 대한 정보가 제한적이기 때문에 알맞은 CA분리막 적용을 위한 제품 간의 연구가 필요하다. 본 연구에서는 실제 셀 구동을 바탕으로 하여 상용 고불소계 분리막의 이온전도경향 및 전기화학적 성능 등을 평가하였다.

Keywords

References

  1. M. Bernal, M. Sanchez-Monedero, C. Paredes, and A. Roig, "Carbon mineralization from organic wastes at different composting stages during their incubation with soil", Agric. Ecosyst. Environ., 69, 175 (1998). https://doi.org/10.1016/S0167-8809(98)00106-6
  2. J. Chlistunoff, "Advanced chlor-alkali technology", pp. 28-33, NM, USA (2005).
  3. R. Chen, V. Trieu, B. Schley, H. Natter, J. Kintrup, A. Bulan, R. Weber, and R. Hempelmann, "Anodic electrocatalytic coatings for electrolytic chlorine production: A review", Z. Phys. Chem. (NF)., 227, 651 (2013). https://doi.org/10.1524/zpch.2013.0338
  4. N. Furuya and H. Aikawa, "Comparative study of oxygen cathodes loaded with Ag and Pt catalysts in chlor-alkali membrane cells", Electrochim. Acta., 45, 4251 (2000). https://doi.org/10.1016/S0013-4686(00)00557-0
  5. Y. Kiros, M. Pirjamali, and M. Bursell, "Oxygen reduction electrodes for electrolysis in chlor-alkali cells", Electrochim. Acta., 51, 3346 (2006). https://doi.org/10.1016/j.electacta.2005.10.024
  6. L. Lipp, S. Gottesfeld, and J. Chlistunoff, "Peroxide formation in a zero-gap chlor-alkali cell with an oxygen-depolarized cathode", J. Appl. Electrochem., 35, 1015 (2005). https://doi.org/10.1007/s10800-005-7340-7
  7. T. Mirzazadeh, F. Mohammadi, M. Soltanieh, and E. Joudaki, "Optimization of caustic current efficiency in a zero-gap advanced chlor-alkali cell with application of genetic algorithm assisted by artificial neural networks", J. Environ. Chem. Eng., 140, 157 (2008). https://doi.org/10.1016/j.cej.2007.09.028
  8. Y. Takasu, W. Sugimoto, Y. Nishiki, and S. Nakamatsu, "Structural analyses of $RuO_2$-$TiO_2$/Ti and $IrO_2$-$RuO_2$-$TiO_2$/Ti anodes used in industrial chlor- alkali membrane processes", J. Appl. Electrochem., 40, 1789 (2010). https://doi.org/10.1007/s10800-010-0137-3
  9. X. Wang, H. Teichgraeber, A. Palazoglu, and N. H. El-Farra, "An economic receding horizon optimization approach for energy management in the chlor-alkali process with hybrid renewable energy generation", J. Process. Control., 24, 1318 (2014). https://doi.org/10.1016/j.jprocont.2014.04.017
  10. Z. Yi, C. Kangning, W. Wei, J. Wang, and S. Lee, "Effect of $IrO_2$ loading on $RuO_2$-$IrO_2$-$TiO_2$ anodes: a study of microstructure and working life for the chlorine evolution reaction", Ceram. Int., 33, 1087 (2007). https://doi.org/10.1016/j.ceramint.2006.03.025
  11. S. Lakshmanan and T. Murugesan, "The chlor-alkali process: Work in progress", Clean Technol. Environ. Policy, 16, 225 (2014). https://doi.org/10.1007/s10098-013-0630-6
  12. A. L. Antozzi, C. Bargioni, L. Iacopetti, M. Musiani, and L. Vazquez-Gomez, "EIS study of the service life of activated cathodes for the hydrogen evolution reaction in the chlor-alkali membrane cell process", Electrochim. Acta., 53, 7410 (2008). https://doi.org/10.1016/j.electacta.2007.12.025
  13. M. Seko, "The ion-exchange membrane, chlor-alkali process", Ind. Eng. Chem. Res., 15, 286 (1976). https://doi.org/10.1021/i360060a013
  14. I. K. Park and C. H. Lee, "Chlor-alkali membrane process and its prospects", Membr. J., 25, 203 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.203
  15. H. Choi, O.-H. Kim, M. Kim, H. Choe, Y.-H. Cho, and Y.-E. Sung, "Next-generation polymer-electrolyte-membrane fuel cells using titanium foam as gas diffusion layer", ACS. Appl. Mater. Interfaces,, 6, 7665 (2014). https://doi.org/10.1021/am500962h
  16. I. Moussallem, J. Jorissen, U. Kunz, S. Pinnow, and T. Turek, "Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects", J. Appl. Electrochem., 38, 1177 (2008). https://doi.org/10.1007/s10800-008-9556-9
  17. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  18. A. Jalali, F. Mohammadi, and S. Ashrafizadeh, "Effects of process conditions on cell voltage, current efficiency and voltage balance of a chlor-alkali membrane cell", Desalination., 237, 126 (2009). https://doi.org/10.1016/j.desal.2007.11.056
  19. D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.43
  20. D. Brandell, J. Karo, A. Liivat, and J. O. Thomas, "Molecular dynamics studies of the Nafion$^{(R)}$, Dow$^{(R)}$ and Aciplex$^{(R)}$ fuel-cell polymer membrane systems", J. Mol. Model., 13, 1039 (2007). https://doi.org/10.1007/s00894-007-0230-7