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Abstract　

Background: Parametric statistical procedures are typically conducted under the condition in which a

sample distribution is statistically identical with its population. In reality, investigators use inferential

statistics to estimate parameters based on the sample drawn because population distributions are

unknown. The uncertainty of limited data from the sample such as lack of sample size may be a

challenge in most rehabilitation studies.

Objects: The purpose of this study is to review the bootstrapping method to overcome shortcomings

of limited sample size in rehabilitation studies.

Methods: Articles were reviewed.

Results: Bootstrapping method is a statistical procedure that permits the iterative re-sampling with

replacement from a sample when the population distribution is unknown. This statistical procedure is to

enhance the representativeness of the population being studied and to determine estimates of the

parameters when sample size are too limited to generalize the study outcome to target population. The

bootstrapping method would overcome limitations such as type II error resulting from small sample sizes.

An application on a typical data of a study represented how to deal with challenges of estimating a

parameter from small sample size and enhance the uncertainty with optimal confidence intervals and

levels.

Conclusion: Bootstrapping method may be an effective statistical procedure reducing the standard error

of population parameters under the condition requiring both acceptable confidence intervals and confidence

level (i.e., p=.05).
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Introduction

Bootstrapping, the word itself saying, is pulling

oneself up by one’s bootstraps over a fence. It is

somewhat an analogous term to a self-sustaining

process that performs an impossible task without ex-

ternal helps. From a statistical standpoint, boot-

strapping is a procedure that permits the iterative

re-sampling with replacement from a sample when

the population distribution is unknown (Efron, 1979).

The method eventually allows setting confidence in-

tervals and estimating significance levels from the

re-sampled distribution. The method appears to be

unrealistically promising to estimate population param-

eters using the re-sampling method over time, how-

ever it actually allows optimal estimates of population

distribution (Kulesa et al, 2015). After the method was

first introduced to statistical sciences by Efron (1979)

and computer technologies was updated, the procedure

has become widespread because it provides methodo-

logical reasoning for inferential statistics.

In inferential statistics, sample statistics such as

mean and standard deviation are to estimate pop-

ulation parameters with some acceptable variations,

which would later be used in evaluating the margin

of errors. These statistics often vary from sample to
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sample. More specifically, one would like to inves-

tigate the magnitude of these variations around the

corresponding population parameter under assump-

tions with which the variation of sample would be

similar to that of population. The overall sense of all

possible values of a sample statistic may be pre-

sented with respect to a possible distribution which

may closely be matched to the population studied.

This is called a sampling distribution. Based on the

sampling distribution, sample statistics may later be

determined to infer population parameters. However,

in many cases, one is unable to determine how the

population would be distributed, thus its parameters

are commonly estimated by sample data only. This

uncertainty resulting from the lack of representative-

ness of the population being studied in relation to

small sample size may lead to a shortcoming of in-

ferential statistics. Therefore obtaining optimal sam-

ple size may be critical to determine stable estimates

of population parameters and to select realistic stat-

istical procedures. (Pedhazur and Schmelkin, 1991;

Tabachnick and Fidell, 1996; Wolf et al, 2013).

Efron (1979) introduced and developed the boot-

strap method drawing repeated samples from the

population studied and obtaining the overall sense of

idea about the sampling distribution. The primary

concept of the method is based on which a simulated

distribution of population estimators obtained by

bootstrap method is able to provide the closest ap-

proximation to the parameter distribution (Efron, 2012;

Efron and Tibshirani, 1993). The stochastic method

applicable to literally any type of sample statistic leads

to a surrogate population approximating the sampling

distribution of a statistic. The sample summary sta-

tistic is then computed on each of the bootstrap

samples. This values may be transferred to a histo-

gram and referred to as the bootstrap distribution of

the sample statistic. Bootstrapping is the most widely

accepted method for overcoming the limitations re-

sulting from small sample sizes and the unreality of

parametric statistical procedures.

Most, if not all, of researches in rehabilitation fields

have been focus on meaningful treatment effects an-

choring the empirical results to evidence-based practice.

These studies are often carried out in healthy or pa-

tient cohorts using the different phases of clinical trials.

To be determined if any changes in the treatment ef-

fects are meaningful “clinically-important changes” or

“minimal detectable changes”, which can be determined

by standard error of measurement (SEM) (Page, 2014;

Wyrwich, 2004). In addition the changes, effect size

indicating clinical significance in measurements be-

tween groups and statistical power indicating the

likelihood of detecting an effect if the effect actually

exists are interrelated with the issues of sample size

(Cohen, 1988). Due to the reason, the most challeng-

ing aspect of many rehabilitation researches is con-

veniently drawing a small sample from the target

patient population to which the outcomes drawn

would be generalized. These small samples may typ-

ically be biased or not representative to the target

patient population. This may also lead to type II er-

ror on a greater risk of small sample being unusual

just by chance. That is, the possibility of getting

type II error increases because statistical hypothesis

testing with small samples may results in accepting

the null hypothesis when it is false (Banerjee et al,

2009; Banerjee and Chaudhury, 2010).

The purpose of this study is to review the boot-

strapping method to overcome shortcomings of lim-

ited sample size in rehabilitation researches.

Bootstrapping

Theoretical Basis

In the bootstrapping method, one may draw a large

number of repeated samples, in other word “ghost

samples”, from the corresponding population and

postulate a sampling distribution of a specific sta-

tistic from the repeated samples to obtain a Monte

Carlo distribution describing for translating un-

certainties in model inputs into uncertainties in model

outputs (Wolf et al, 2013). The newly obtained dis-
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Figure 1. Framework of the bootstrapping sample.

tribution is referred to as the bootstrap distribution

of the statistic. The method may also be used only

when the distributions is unable to be estimated

analytically. Theoretically, the method is based on

central limit theorem, which assumes a bell shaped

normal distribution curve with μ for mean and σ/

for standard deviation. Hence, the sampling dis-

tribution of ( -μ)/SE (standard error of the mean)

with SE=σ/ will be approximated by the boot-

strap distribution of ( - )/ with =bootstrap

sample mean and =s/ .

For example, we typically accept samples when the

sampling distribution of the estimates is able to esti-

mate its population parameters. That is, the dis-

tribution representing a symmetrically bell-shaped with

μ at the center and σ/ for standard deviation can

approximate the population distribution. The esti-

mates of sample mean or median may randomly be

bootstrapped by which the repeated samples repre-

sents the same statistic from the population. The

bootstrap distribution now better approximates to the

sampling distribution with which the statistical func-

tion is of the form of (-
)/ where  is the

estimate of the SE of  and  is the mean of

bootstrap sample based on bootstrap central limit

theorem (Singh, 1981). The method includes; 1)

treating a sample of size n from a population as a

virtual population, 2) re-sampling k samples of size

n by permitting replacement (i.e., bootstrapping sam-

ple), 3) creating a simulated distribution for the pa-

rameters such as mean, SEs and confidence intervals

(CIs). It should be noted that identical measurements

may be selected over time in the bootstrapping sample

due to allowing replacement. At extreme cases, all

measurements selected can be identical (Figure 1).

Bias correction by bootstrap

The mean value of sampling distribution of  often

differs from its true mean because the estimator of 

is a function of individual data (i.e., X1, X2, X3, ..., Xn).

That is, the difference between the estimator and true

mean is determined by large n, which replaces the

population by the empirical population of the sample.

This is so called bias correction by bootstrap. In addi-

tion, the SE of the estimator can be computed by the

simple bootstrap sample as the sample varies on all

possible samples (Efron, 2012; Singh and Xie, 2003).

Bootstrap confidence interval (CI)

The CI, a sample based range, are often provided
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for the unknown mean of as an estimator of pop-

ulation parameter. This is a property that true mean

values would fall into within the range with a speci-

fied probability with respect to all possible samples

depending on how the samples are drawn. That is,

the CI is asymptotically determined by sampling dis-

tribution of the estimator of true mean as the sample

size is approximate to infinity (i.e., n→∞). In boot-

strap method, one may draw 1,000 bootstrap re-

plicated estimators for true mean, rank from the

lowest to the highest, and determine the CI at 95%

when choosing 95% CI. For example, when the re-

plicated estimators of true means () are denoted by
, Individual bootstrap values are denoted by 1, 

2, ...,1000. The CI for the bootstrap samples at 95%

would be 25, 975. Since it should be noted that the

sampling distribution of - is symmetrically

distributed. Hence, the sampling distribution of -

is approximated by the bootstrap distribution of -

B, which is contrary to the bootstrap concept and

could now be approximated by the bootstrap dis-

tribution of B-.

Bootstrap-t method

For better accuracy, it is possible to bootstrap a

statistical function of the form t=( -)/, where
 is a sample estimate of the standard error of .

In other words, Edgeworth correction by the boot-

strap (Hall, 1988; Hall, 1992). The bootstrap-t is

analogous to t-statistic where the SE of population

mean is unknown, in most cases, and the standard

deviation of the sample is replaceable for the un-

known SE (i.e., =s/ ). Likewise the bootstrap-t

is denoted by tB=B-/B where B is exactly

like the SE as previously discussed under the boot-

strap CI. Additionally the tB statistic can be obtained

from the bootstrap sample and considered within the

bootstrap CI. For instance, the  would lies between
-tB .975SE and -tB .025SE when tB statistic from

1,000 bootstrap replicated estimators is denoted by

(-
 )/. This range for  is the bootstrap-t CI

obtained by bootstrap-t method at the 95% probability.

Such an interval is now known to believe better ac-

curacy in comparison to the traditional methods. It

should be noted that the bootstrap-t method.

Sample size issues in healthcare research

Of the factors affecting quality sampling, selecting

an optimal sample size is a matter of falsely imply-

ing no significant difference. In other words, the

probability of accepting the null hypothesis when it

is false (i.e., type II error) depends on the sample

size. In addition, the sample size is often too small

to give a reliable test. Accepting the null hypothesis

leads to further considerations such as whether the

null is true or false in the real situation. Needless to

say, investigators may consider accepted methods to

determine how large a sample size should be such

as power analyses or differently design the study to

compare parameters between different populations.

Most, if not all, researches in health care settings

are typically conducted to demonstrate treatment ef-

fects in the forms of treated versus control group or

survey design in which the numbers of subject are

always limited by realities. The reason for that

would be limited time and cost, or high drop-out

rate. Consequently, it is difficult to recruit an ample

sample size in health care researches, despite de-

termining the optimal sample size with accepted

methods (Anderson and Vingrys, 2001).

An application of bootstrap method on a 

real data

Several simulation studies emphasized that sample

statistics are sensitive to sample size (Claudy, 1972;

Pernet et al, 2015) and the ratio of sample size versus

the number of variable around 5:1∼10:1 was recom-

mended as for stable results (Green, 1991). In boot-

strapping method, an alternative of stably estimating

the parameters is recommended as empirical evi-

dences are unable to provide a standard but merely

a compendious guideline for the determination of

sample size. The method practically regards a virtual

population as a sample of n measurements from pop-
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Sample size Mean Variance
Bootstrapping

SE
a

Upper CI
b

Lower CI

Original sample (n=123) 38.10 83.04 .86 36.44 39.84

Bootstrapping (n=500 replications) 38.10 83.04 .82 36.47 39.82

Bootstrapping (n=1,000 replications) 38.10 83.04 .81 36.57 39.71
astandard error, bconfidence interval.

Table 1. The changes of a descriptive statistic following the bootstrapping procedure

ulation and draws samples with same size of n

measurements allowing replacement to create boot-

strapping sample. Under given conditions, an applica-

tion to an original sample of n observations is as fol-

lows; 1) conducting a bootstrapping sample by ran-

dom sampling method allowing replacement from the

original sample, 2) estimating the mean and CI of

the bootstrapping sample, 3) obtaining simulated dis-

tributions for two conditions with replicated the pre-

vious two procedures (i.e., 500 and 1,000 replications)

and comparing those 3 estimates (i.e., the original

sample, bootstrapping samples with 500 and 1,000

replications).

For a bootstrapping example with CI changes, a real

data of studies (Choi and Park, 2012; Velozo et al,

2006) was used. The instrument of the study com-

prises functional capacity scales for measuring 10

functional activities from dictionary of occupational

title at admission and discharge of worker’s compen-

sation clients. The rating scales were rated four cat-

egories: 1) severely impaired, 2) moderately impaired,

3) mildly impaired and 4) not impaired. When apply-

ing descriptive statistic procedure with bootstrapping

method the total score of the functional capacity

scale at discharge, mean value remains the same but

standard error slightly changes (Table 1) as well as

the confidence interval (Figure 2).

Whether applying the bootstrapping method or not,

the mean value provided best estimates. That is, the

estimator of remains the same whether the boot-

strapping applied or not. In addition, increasing sam-

ple size by applying bootstrapping procedure from

123 to 500 and 1,000 cases, the SEs get smaller.

This is the case where very similar sample may be

drawn from its original sample during the procedure.

Thus, bias correction by bootstrapping procedure was

not necessary (Button et al, 2013; Efron, 2012). In

addition, in a comparison of the two bootstrapping

samples with size of 500 and 1,000, the SEs of the

estimator allowing replications were more precise

relative to that of its original sample as sample sizes

increase. This would eventually lower the type II er-

ror, also known as a false negative, in which the

newly drawn samples may be less biased or more

representative to the target population being studied

(Ioannidis, 2008; Ioannidis et al, 2011).

In general, both CI and p-value are acceptable to

confirm the uncertainty in a point estimate from

samples (Masicampo and Lalande, 2012). However CI

is well known for its less subjective judgement to

misinterpretation and better descriptive statistic to the

range of possible value in comparison with p-value.

High confidence level is typically recommended for

estimating a parameter because there is a smaller

chance of including the parameter (e.g., mean) in a

particular confidence interval (Tabachnick and Fidell,

1996). Therefore, acceptable CI should be as narrow

as possible and confidence level should be as high as

possible. A dilemma between these two factors is

that CI gets larger when confidence level is high and

vice versa. That is, a best strategy increasing a nar-

row CI would be lowering standard error as much as

possible by increasing sample size after setting a

particular confidence level. Because, as stated pre-

viously, the standard error  is calculated from s/

in which there is no control for s but for  .
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Figure 2. The changes of confidence intervals among the original sample,
two bootstrapping samples with 500 and 1,000 replications.

Conclusion

Applying bootstrapping method to a sample with

small size of n may be an effective procedure re-

ducing the SE of parameter under the condition re-

quiring both acceptable CI and optimal confidence

level (p=.05 in general). Therefore most, if not all,

researches in rehabilitation science fields can resolve

greater risk of type II error resulting from small

sample sizes.
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