DOI QR코드

DOI QR Code

Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis

  • Kim, Sang-Su (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Kim, Jung-Hyun (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Han, Ik-Hwan (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Ahn, Myoung-Hee (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine) ;
  • Ryu, Jae-Sook (Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine)
  • Received : 2016.03.10
  • Accepted : 2016.04.05
  • Published : 2016.04.30

Abstract

Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-$1{\beta}$, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-${\kappa}B$ were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-${\kappa}B$, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-${\kappa}B$ inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS).

Keywords

References

  1. World Health Organization (WHO). Global incidence and prevalence of selected curable sexually transmitted infections - 2008. Geneva, Switzerland. WHO, 2012.
  2. Hobbs MM, Sena AC. Modern diagnosis of Trichomonas vaginalis infection. Sex Transm Infect 2013; 89: 434-438. https://doi.org/10.1136/sextrans-2013-051057
  3. Krieger JN. Trichomoniasis in men: old issues and new data. Sex Transm Dis 1995; 22: 83-96. https://doi.org/10.1097/00007435-199503000-00003
  4. Quinlivan EB, Patel SN, Grodensky CA, Golin CE, Tien HC, Hobbs MM. Modeling the impact of Trichomonas vaginalis infection on HIV transmission in HIV-infected individuals in medical care. Sex Transm Dis 2012; 39: 671-677. https://doi.org/10.1097/OLQ.0b013e3182593839
  5. Lee JJ, Moon HS, Lee TY, Hwang HS, Ahn MH, Ryu JS. PCR for diagnosis of male Trichomonas vaginalis infection with chronic prostatitis and urethritis. Korean J Parasitol 2012; 50: 157-159. https://doi.org/10.3347/kjp.2012.50.2.157
  6. Mitteregger D, Aberle SW, Makristathis A, Walochnik J, Brozek W, Marberger M, Kramer G. High detection rate of Trichomonas vaginalis in benign hyperplastic prostatic tissue. Med Microbiol Immunol 2012; 201: 113-116. https://doi.org/10.1007/s00430-011-0205-2
  7. Sena AC, Miller WC, Hobbs MM, Schwebke JR, Leone PA, Swygard H, Atashili J, Cohen MS. Trichomonas vaginalis infection in male sexual partners: implications for diagnosis, treatment, and prevention. Clin Infect Dis 2007; 44: 13-22. https://doi.org/10.1086/511144
  8. Seo MY, Im SJ, Gu NY, Kim JH, Chung YH, Ahn MH, Ryu JS. Inflammatory response of prostate epithelial cells to stimulation by Trichomonas vaginalis. Prostate 2014; 74: 441-449. https://doi.org/10.1002/pros.22766
  9. Garraway WM, Collins GN, Lee RJ. High prevalence of benign prostatic hypertrophy in the community. Lancet (London, England) 1991; 338: 469-471. https://doi.org/10.1016/0140-6736(91)90543-X
  10. Robert G, Descazeaud A, Allory Y, Vacherot F, de la Taille A. Should we investigate prostatic inflammation for the management of benign prostatic hyperplasia? Eur Urol Suppl 2009; 8: 879-886. https://doi.org/10.1016/j.eursup.2009.11.004
  11. Wei JT, Calhoun E, Jacobsen SJ. Urologic diseases in America project: benign prostatic hyperplasia. J Urol 2005; 173: 1256-1261. https://doi.org/10.1097/01.ju.0000155709.37840.fe
  12. Wang X, Lin WJ, Izumi K, Jiang Q, Lai KP, Xu D, Fang LY, Lu T, Li L, Xia S, Chang C. Increased infiltrated macrophages in benign prostatic hyperplasia (BPH): role of stromal androgen receptor in macrophage-induced prostate stromal cell proliferation. J Biol Chem 2012; 287: 18376-18385. https://doi.org/10.1074/jbc.M112.355164
  13. Theyer G, Kramer G, Assmann I, Sherwood E, Preinfalk W, Marberger M, Zechner O, Steiner GE. Phenotypic characterization of infiltrating leukocytes in benign prostatic hyperplasia. Lab Invest 1992; 66: 96-107.
  14. Fujita K, Ewing CM, Getzenberg RH, Parsons JK, Isaacs WB, Pavlovich CP. Monocyte chemotactic protein-1 (MCP-1/CCL2) is associated with prostatic growth dysregulation and benign prostatic hyperplasia. Prostate 2010; 70: 473-481.
  15. Nickel JC, Downey J, Young I, Boag S. Asymptomatic inflammation and/or infection in benign prostatic hyperplasia. BJU Int 1999; 84: 976-981.
  16. Bedalov G, Vuckovic I, Fridrih S, Bruk M, Puskar D, Bartolin Z. Prostatitis in benign prostatic hyperplasia: a histological, bacteriological and clinical study. Acta Med Croatica 1994; 48: 105-109.
  17. Moodley P, Wilkinson D, Connolly C, Moodley J, Sturm AW. Trichomonas vaginalis is associated with pelvic inflammatory disease in women infected with human immunodeficiency virus. Clin Infec Dis 2002; 34: 519-522. https://doi.org/10.1086/338399
  18. Han IH, Park SJ, Ahn MH, Ryu JS. Involvement of mast cells in inflammation induced by Trichomonas vaginalis via crosstalk with vaginal epithelial cells. Parasite Immunol 2012; 34: 8-14. https://doi.org/10.1111/j.1365-3024.2011.01338.x
  19. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 8th ed. Philadelphia, USA. Elsevier Saunders. 2012, pp 76-78.
  20. Desireddi NV, Campbell PL, Stern JA, Sobkoviak R, Chuai S, Shahrara S, Thumbikat P, Pope RM, Landis JR, Koch AE, Schaeffer AJ. Monocyte chemoattractant protein-1 and macrophage inflammatory protein-1alpha as possible biomarkers for the chronic pelvic pain syndrome. J Urol 2008; 179: 1857-1861. https://doi.org/10.1016/j.juro.2008.01.028
  21. Mazzucchelli L, Loetscher P, Kappeler A, Uguccioni M, Baggiolini M, Laissue JA, Mueller C. Monocyte chemoattractant protein-1 gene expression in prostatic hyperplasia and prostate adenocarcinoma. Am J Pathol 1996; 149: 501-509.
  22. Kramer G, Mitteregger D, Marberger M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur Urol 2007; 51: 1202-1216. https://doi.org/10.1016/j.eururo.2006.12.011
  23. Schmitz N, Kurrer M, Bachmann MF, Kopf M. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J Virol 2005; 79: 6441-6448. https://doi.org/10.1128/JVI.79.10.6441-6448.2005
  24. Abbott DW, Wilkins A, Asara JM, Cantley LC. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol 2004; 14: 2217-2227. https://doi.org/10.1016/j.cub.2004.12.032
  25. Gu NY, Kim JH, Han IH, Im SJ, Seo MY, Chung YH, Ryu JS. Trichomonas vaginalis induces IL-$1{\beta}$ production in a human prostate epithelial cell line by activating the NLRP3 inflammasome via reactive oxygen species and potassium ion efflux. Prostate 2016; DOI: 10.1002/pros.23178.
  26. Kashyap M, Pore S, Wang Z, Gingrich J, Yoshimura N, Tyagi P. Inflammasomes are important mediators of prostatic inflammation associated with BPH. J Inflamm 2015; 12: DOI: 10.1186/s12950-12015-10082-12953.
  27. Castro P, Xia C, Gomez L, Lamb DJ, Ittmann M. Interleukin-8 expression is increased in senescent prostatic epithelial cells and promotes the development of benign prostatic hyperplasia. Prostate 2004; 60: 153-159. https://doi.org/10.1002/pros.20051
  28. Liu L, Li Q, Han P, Li X, Zeng H, Zhu Y, Wei Q. Evaluation of interleukin-8 in expressed prostatic secretion as a reliable biomarker of inflammation in benign prostatic hyperplasia. Urology 2009; 74: 340-344. https://doi.org/10.1016/j.urology.2009.02.064
  29. Heinrich P, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J 1990; 265: 621-636. https://doi.org/10.1042/bj2650621
  30. Greenhill CJ, Rose-John S, Lissilaa R, Ferlin W, Ernst M, Hertzog PJ, Mansell A, Jenkins BJ. IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3. J Immunol 2011; 186: 1199-1208. https://doi.org/10.4049/jimmunol.1002971
  31. Kramer G, Marberger M. Could inflammation be a key component in the progression of benign prostatic hyperplasia?. Curr Opin Urol 2006; 16: 25-29.
  32. Bouraoui Y, Ricote M, Garcia-Tunon I, Rodriguez-Berriguete G, Touffehi M, Rais NB, Fraile B, Paniagua R, Oueslati R, Royuela M. Pro-inflammatory cytokines and prostate-specific antigen in hyperplasia and human prostate cancer. Cancer Detect Prev 2008; 32: 23-32.
  33. Adler HL, McCurdy MA, Kattan MW, Timme TL, Scardino PT, Thompson TC. Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol 1999; 161: 182-187. https://doi.org/10.1016/S0022-5347(01)62092-5
  34. Daniel J. George SH, Timothy F. Shepard BS, Nicholas J. Vogelzang EJS, and, Kantoff PW. The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 9480. Clin Cancer Res 2005; 11: 1815-1820. https://doi.org/10.1158/1078-0432.CCR-04-1560
  35. Ernst M, Jenkins BJ. Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet 2004; 20: 23-32. https://doi.org/10.1016/j.tig.2003.11.003
  36. Li L, Ittmann MM, Ayala G, Tsai MJ, Amato RJ, Wheeler TM, Miles BJ, Kadmon D, Thompson TC. The emerging role of the PI3-K-Akt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis 2005; 8: 108-118. https://doi.org/10.1038/sj.pcan.4500776
  37. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374: 1-20. https://doi.org/10.1042/bj20030407
  38. Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 2002; 166: S4-S8. https://doi.org/10.1164/rccm.2206007
  39. Min A, Lee YA, Kim KA, El-Benna J, Shin MH. NOX2-derived ROS-mediated surface translocation of BLT1 is essential for exocytosis in human eosinophils induced by LTB4. Int Arch Allergy Immunol 2014; 165: 40-51. https://doi.org/10.1159/000366277
  40. Makni-Maalej K, Chiandotto M, Hurtado-Nedelec M, Bedouhene S, Gougerot-Pocidalo MA, Dang PM, El-Benna J. Zymosan induces NADPH oxidase activation in human neutrophils by inducing the phosphorylation of p47phox and the activation of Rac2: involvement of protein tyrosine kinases, PI3Kinase, PKC, ERK1/2 and p38 MAPkinase. Biochem Pharmacol 2013; 85: 92-100. https://doi.org/10.1016/j.bcp.2012.10.010
  41. Min YD, Choi CH, Bark H, Son HY, Park HH, Lee S, Park JW, Park EK, Shin HI, Kim SH. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-kappaB and p38 MAPK in HMC-1 human mast cell line. Inflamm Res 2007; 56: 210-215. https://doi.org/10.1007/s00011-007-6172-9
  42. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 2011; 2011: DOI: 10.1155/2011/792639.

Cited by

  1. Proliferation of Prostate Stromal Cell Induced by Benign Prostatic Hyperplasia Epithelial Cell Stimulated With Trichomonas vaginalis via Crosstalk With Mast Cell vol.76, pp.15, 2016, https://doi.org/10.1002/pros.23227
  2. Signalling pathways associated with IL‐6 production and epithelial–mesenchymal transition induction in prostate epithelial cells stimulated with Trichomonas vaginalis vol.38, pp.11, 2016, https://doi.org/10.1111/pim.12357
  3. Atractylenolide II Induces Apoptosis of Prostate Cancer Cells through Regulation of AR and JAK2/STAT3 Signaling Pathways vol.23, pp.12, 2018, https://doi.org/10.3390/molecules23123298
  4. Synopsis: Special Issue on “Disruption of signaling homeostasis induced crosstalk in the carcinogenesis paradigm Epistemology of the origin of cancer” vol.2, pp.None, 2016, https://doi.org/10.1051/fopen/2019023
  5. Inflammatory mediators of prostate epithelial cells stimulated with Trichomonas vaginalis promote proliferative and invasive properties of prostate cancer cells vol.79, pp.10, 2016, https://doi.org/10.1002/pros.23826
  6. Cancer-Associated Fibroblasts Produce Netrin-1 to Control Cancer Cell Plasticity vol.79, pp.14, 2019, https://doi.org/10.1158/0008-5472.can-18-2952
  7. Monocyte-derived extracellular trap (MET) formation induces aggregation and affects motility of human spermatozoa in vitro vol.65, pp.5, 2016, https://doi.org/10.1080/19396368.2019.1624873