DOI QR코드

DOI QR Code

A Rapid and Convenient Method for in Vivo Fluorescent Imaging of Protoscolices of Echinococcus multilocularis

  • Yang, Tao (Department of General Surgery, First Affiliated Hospital, Shihezi University School of Medicine) ;
  • Wang, Sibo (Department of General Surgery, First Affiliated Hospital, Shihezi University School of Medicine) ;
  • Zhang, Xuyong (Department of General Surgery, First Affiliated Hospital, Shihezi University School of Medicine) ;
  • Xia, Jie (Department of General Surgery, First Affiliated Hospital, Shihezi University School of Medicine) ;
  • Guo, Jun (Department of General Surgery, First Affiliated Hospital, Shihezi University School of Medicine) ;
  • Hou, Jixue (Department of General Surgery, First Affiliated Hospital, Shihezi University School of Medicine) ;
  • Zhang, Hongwei (Department of General Surgery, First Affiliated Hospital, Shihezi University School of Medicine) ;
  • Chen, Xueling (Department of Immunology, Shihezi University School of Medicine) ;
  • Wu, Xiangwei (Department of General Surgery, First Affiliated Hospital, Shihezi University School of Medicine)
  • Received : 2015.11.26
  • Accepted : 2016.02.01
  • Published : 2016.04.30

Abstract

Human and animal alveolar echinococcosis (AE) are important helminth infections endemic in wide areas of the Northern hemisphere. Monitoring Echinococcus multilocularis viability and spread using real-time fluorescent imaging in vivo provides a fast method to evaluate the load of parasite. Here, we generated a kind of fluorescent protoscolices in vivo imaging model and utilized this model to assess the activity against E. multilocularis protoscolices of metformin (Met). Results indicated that JC-1 tagged E. multilocularis can be reliably and confidently used to monitor protoscolices in vitro and in vivo. The availability of this transient in vivo fluorescent imaging of E. multilocularis protoscolices constitutes an important step toward the long term bio-imaging research of the AE-infected mouse models. In addition, this will be of great interest for further research on infection strategies and development of drugs and vaccines against E. multilocularis and other cestodes.

Keywords

References

  1. Giraudoux P, Raoul F, Afonso E, Ziadinov I, Yang Y, Li L, Li T, Quere JP, Feng X, Wang Q, Wen H, Ito A, Craig PS. Transmission ecosystems of Echinococcus multilocularis in China and Central Asia. Parasitology 2013; 140: 1655-1666. https://doi.org/10.1017/S0031182013000644
  2. Gottstein B, Stojkovic M, Vuitton DA, Millon L, Marcinkute A, Deplazes P. Threat of alveolar echinococcosis to public health - a challenge for Europe. Trends Parasitol 2015; 31: 407-411. https://doi.org/10.1016/j.pt.2015.06.001
  3. Eckert J, Deplazes P. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev 2004; 17: 107-135. https://doi.org/10.1128/CMR.17.1.107-135.2004
  4. Hemphill A, Stadelmann B, Rufener R, Spiliotis M, Boubaker G, Muller J, Muller N, Gorgas D, Gottstein B. Treatment of echinococcosis: albendazole and mebendazole--what else? Parasite 2014; 21: 70. https://doi.org/10.1051/parasite/2014073
  5. Kuster T, Stadelmann B, Hermann C, Scholl S, Keiser J, Hemphill A. In vitro and in vivo efficacies of mefloquine-based treatment against alveolar echinococcosis. Antimicrob Agents Chemother 2011; 55: 713-721. https://doi.org/10.1128/AAC.01392-10
  6. Emery I, Bories C, Liance M, Houin R. In vitro quantitative assessment of Echinococcus multilocularis metacestode viability after in vivo and in vitro main-tenance. Int J Parasitol 1995; 25: 275-278. https://doi.org/10.1016/0020-7519(94)00117-7
  7. Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK, Benaron DA. Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 1995; 18: 593-603. https://doi.org/10.1111/j.1365-2958.1995.mmi_18040593.x
  8. Kadurugamuwa JL, Modi K, Yu J, Francis KP, Orihuela C, Tuomanen E, Purchio AF, Contag PR. Noninvasive monitoring of pneumococcal meningitis and evaluation of treatment efficacy in an experimental mouse model. Mol Imaging 2005; 4: 137-142.
  9. Bag S, Tawari NR, Sharma R, Goswami K, Reddy MV, Degani MS. In vitro biological evaluation of biguanides and dihydrotriazines against Brugia malayi and folate reversal studies. Acta Trop 2010; 113: 48-51. https://doi.org/10.1016/j.actatropica.2009.09.004
  10. Wilcock C, Bailey CJ. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 1994; 24: 49-57. https://doi.org/10.3109/00498259409043220
  11. Reuter S, Merkle M, Brehm K, Kern P, Manfras B. Effect of amphotericin B on larval growth of Echinococcus multilocularis. Antimicrob Agents Chemother 2003; 47: 620-625. https://doi.org/10.1128/AAC.47.2.620-625.2003
  12. Ceballos L, Elissondo C, Sanchez Bruni S, Denegri G, Lanusse C, Alvarez L. Comparative performances of flubendazole and albendazole in cystic echinococcosis: ex vivo activity, plasma/cyst disposition, and efficacy in infected mice. Antimicrob Agents Chemother 2011; 55: 5861-5867. https://doi.org/10.1128/AAC.05105-11
  13. Ingold K, Bigler P, Thormann W, Cavaliero T, Gottstein B, Hemphill A. Efficacies of albendazole sulfoxide and albendazole sulfone against in vitro cultivated Echinococcus multilocularis metacestodes. Antimicrob Agents Chemother 1999; 43: 1052-1061.
  14. Reers M, Smith TW, Chen LB. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 1991; 30: 4480-4486. https://doi.org/10.1021/bi00232a015
  15. Pan H, Cheng L, Yang H, Zou W, Cheng R, Hu T. Lysophosphatidic acid rescues human dental pulp cells from ischemia-induced apoptosis. J Endod 2014; 40: 217-222. https://doi.org/10.1016/j.joen.2013.07.015
  16. Bakstad D, Adamson A, Spiller DG, White MR. Quantitative measurement of single cell dynamics. Curr Opin Biotechnol 2012; 23: 103-109. https://doi.org/10.1016/j.copbio.2011.11.007
  17. Jones K, Ward SA. Biguanide-atovaquone synergy against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 2002; 46: 2700-2703. https://doi.org/10.1128/AAC.46.8.2700-2703.2002
  18. Barrett MP. Problems for the chemotherapy of human African trypanosomiasis. Curr Opin Infect Dis 2000; 13: 647-651. https://doi.org/10.1097/00001432-200012000-00012
  19. Copeland NK, Aronson NE. Leishmaniasis: treatment updates and clinical practice guidelines review. Curr Opin Infect Dis 2015; 28: 426-437. https://doi.org/10.1097/QCO.0000000000000194
  20. Gupta YK, Gupta M, Aneja S, Kohli K. Current drug therapy of protozoal diarrhoea. Indian J Pediatr 2004; 71: 55-58. https://doi.org/10.1007/BF02725657
  21. Srivastava IK, Vaidya AB. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob Agents Chemother 1999; 43: 1334-1339.
  22. Gottstein B, Hemphill A. Echinococcus multilocularis: the parasite-host interplay. Exp Parasitol 2008; 119: 447-452. https://doi.org/10.1016/j.exppara.2008.03.002
  23. Tiernan JP, Ingram N, Marston G, Perry SL, Rushworth JV, Coletta PL, Millner PA, Jayne DG, Hughes TA. CEA-targeted nanoparticles allow specific in vivo fluorescent imaging of colorectal cancer models. Nanomedicine 2015; 10: 1223-1231. https://doi.org/10.2217/nnm.14.202
  24. Calvo-Alvarez E, Stamatakis K, Punzon C, Alvarez-Velilla R, Tejeria A, Escudero-Martinez JM, Perez-Pertejo Y, Fresno M, Balana-Fouce R, Reguera RM. Infrared fluorescent imaging as a potent tool for in vitro, ex vivo and in vivo models of visceral leishmaniasis. PLoS Negl Trop Dis 2015; 9: e0003666. https://doi.org/10.1371/journal.pntd.0003666
  25. Spiliotis M, Lechner S, Tappe D, Scheller C, Krohne G, Brehm K. Transient transfection of Echinococcus multilocularis primary cells and complete in vitro regeneration of metacestode vesicles. Int J Parasitol 2008; 38: 1025-1039. https://doi.org/10.1016/j.ijpara.2007.11.002
  26. Mizukami C, Spiliotis M, Gottstein B, Yagi K, Katakura K, Oku Y. Gene silencing in Echinococcus multilocularis protoscolices using RNA interference. Parasitol Int 2010; 59: 647-652. https://doi.org/10.1016/j.parint.2010.08.010

Cited by

  1. In Vitro and In Vivo Efficacy of Albendazole Chitosan Microspheres with Intensity-Modulated Radiation Therapy in the Treatment of Spinal Echinococcosis vol.65, pp.11, 2016, https://doi.org/10.1128/aac.00795-21