DOI QR코드

DOI QR Code

Effects of Powder Melting Degree on Microstructural Features of Plasma Sprayed Y2O3 Coating

플라즈마 제트에서의 분말 용융특성에 따른 Y2O3 코팅층의 미세조직 형성거동

  • Kang, Sang-Woon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Baik, Kyeong-Ho (Department of Materials Science and Engineering, Chungnam National University)
  • 강상운 (충남대학교 신소재공학과) ;
  • 백경호 (충남대학교 신소재공학과)
  • Received : 2016.03.08
  • Accepted : 2016.04.05
  • Published : 2016.05.27

Abstract

In this study, the degree of particle melting in $Y_2O_3$ plasma spraying and its effects on coating characteristics have been investigated in terms of microstructural features, microhardness and scratch resistance. Plasma sprayed $Y_2O_3$ coatings were formed using two different powder feeding systems: a system in which the powder is fed inside the plasma gun and a system in which the powder is fed externally. The internal powder spraying method generated a well-defined lamellae structure that was characterized by a thin porous layer at the splat boundary and microcracks within individual splats. Such micro-defects were generated by the large thermal contraction of splats from fully-molten droplets. The external powder spraying method formed a relatively dense coating with a particulate deposition mode, and the deposition of a higher fraction of partially-melted droplets led to a much reduced number of inter-splat pores and intra-splat microcracks. The microhardness and scratch resistance of the $Y_2O_3$ coatings were improved by external powder spraying; this result was mainly attributed to the reduced number of micro-defects.

Keywords

References

  1. A. J. Van Roosmalen, J. A. G. Baggerman and S. J. H. Brader, Dry Etching for VLSI, p.99, Plenum Press, New York (1991).
  2. R. Doering and Y. Nishi, Handbook of Semiconductor Manufacturing Technology, p.21, CRC Press, New York (2008).
  3. D. M. Kim, K. B. Kim, S. Y. Yoon, Y. S. Oh, H. T. Kim and S. M. Lee, J. Ceram. Soc. Jpn., 117, 863 (2009). https://doi.org/10.2109/jcersj2.117.863
  4. M. Kazuhiro, T. Norihatu and S. Koichi, J. Vac. Sci. Technol. A, 27, 831 (2009).
  5. R. Ramos, G. Cunge, B. Pelissier and O. Joubert, Plasma Sources Sci. Technol., 16, 711 (2007). https://doi.org/10.1088/0963-0252/16/4/004
  6. D. M. Kim, S. Y. Yoon, K. B. Kim, H. S. Kim, Y. S. Oh and S. M. Lee, J. Korean Ceram. Soc. (in Korean), 45, 707 (2008). https://doi.org/10.4191/KCERS.2008.45.1.707
  7. D. M. Kim, Y. S. Oh, S. W. Kim, H. T. Kim, D. S. Lim and S. M. Lee, Thin Solid Films, 519, 6698 (2011). https://doi.org/10.1016/j.tsf.2011.04.049
  8. S. Beauvais, V. Guipont, F. Borit, M. Jeandin, M. Espanol, K. A. Khor, A. Robisson and R. Saenger, Surf. Coat. Technol., 183, 204 (2004). https://doi.org/10.1016/j.surfcoat.2003.08.078
  9. M. Tului, G. Marino and T. Valente, Surf. Coat. Technol., 201, 2103 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.053
  10. H. K. Seok, E. Y. Choi, P. R. Cha, M. C. Son and B. Choi, Surf. Coat. Technol., 205, 3341 (2011). https://doi.org/10.1016/j.surfcoat.2010.10.045
  11. J. Kitamura, H. Ibe, F. Yuasa and H. Mizuno, J. Therm. Spray Soc., 17, 878 (2008). https://doi.org/10.1007/s11666-008-9285-y
  12. I. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara and K. Uematsu, J. Am. Ceram. Soc., 90, 2327 (2007). https://doi.org/10.1111/j.1551-2916.2007.01738.x
  13. K. Y. Choi, Y. S. Oh, S. Kim and S. M. Lee, Ceram. Int., 39, 1209 (2013). https://doi.org/10.1016/j.ceramint.2012.07.046
  14. D. H. Riu, S. W. Lee, Y. K. Jeong and S. C. Choi, Key Eng. Mater., 264-8, 601 (2004).
  15. T. Gougousi and Z. Chen, Thin Solid Films. 516, 6197 (2008). https://doi.org/10.1016/j.tsf.2007.11.104
  16. T. Watanabe, M. Kondo, T. Nagasaka, and A. Sagara, J. Plasma Fusion Res., 9, 342 (2010).
  17. M. Berkowski, P. Bowen, T. Liechti and H. J. Scheel, J. Am. Ceram. Soc., 75, 1005 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04175.x
  18. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, p.28-50, John Wiley & Sons, New York (1995).
  19. K. H. Baik, P. S. Grant and B. Cantor, Acta Mater., 52, 199 (2004). https://doi.org/10.1016/j.actamat.2003.09.006
  20. P. Fauchais, J. Phys. D: Applied Physics, 37, R86 (2004). https://doi.org/10.1088/0022-3727/37/9/R02
  21. C. Li, C. Li and M. Wang, Surf. Coat. Technol., 198, 278 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.083
  22. H. Y. Lee and K. H. Baik, Met. Mater. Int., 15, 783 (2009). https://doi.org/10.1007/s12540-009-0783-8
  23. W. S. So and K. H. Baik, Korean J. Mater. Res. (in Korean), 21, 106 (2011). https://doi.org/10.3740/MRSK.2011.21.2.106