DOI QR코드

DOI QR Code

Electrode Properties for Water Electrolysis of Hydrophilic Carbon Paper with Thermal Anneal

열처리된 친수성 카본 페이퍼 전극의 전기 물 분해 특성

  • Yoo, Il-Han (Department of Energy Systems Research and Department of Materials Science & Engineering, Ajou University) ;
  • Seo, Hyungtak (Department of Energy Systems Research and Department of Materials Science & Engineering, Ajou University)
  • 유일한 (아주대학교 신소재 공학과 & 에너지 시스템학과) ;
  • 서형탁 (아주대학교 신소재 공학과 & 에너지 시스템학과)
  • Received : 2016.02.25
  • Accepted : 2016.03.27
  • Published : 2016.05.27

Abstract

Hydrogen is considered a potential future energy source. Among other applications of hydrogen, hydrogen-rich water is emerging as a new health care product in industrial areas. Water electrolysis is typically used to generate a hydrogen rich water system. We annealed 10AA carbon paper in air to use it as an electrode of a hydrogen rich water generator. Driven by annealing, structural changes of the carbon paper were identified by secondary electron microscope analysis. Depending on the various annealing temperatures, changes of the hydrophilic characteristics were demonstrated. The crystal structures of pristine and heat-treated carbon paper were characterized by X-ray diffraction. Improvement of the efficiency of the electrochemical oxygen evolution reaction was measured via linear voltammetry. The optimized annealing temperature of 10AA carbon paper showed the possibility of using this material as an effective hydrogen rich water generator.

Keywords

References

  1. X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 110, 6503 (2010). https://doi.org/10.1021/cr1001645
  2. H. Gu, Z. Wang and Y. Hu, Sensors, 12, 5517 (2012). https://doi.org/10.3390/s120505517
  3. B. Rausch, M. D. Symes and L. Cronin, J. Am. Chem. Soc., 135, 13656 (2013). https://doi.org/10.1021/ja4071893
  4. M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang and H. Dai, Nat. Commun., 5 4695 (2014). https://doi.org/10.1038/ncomms5695
  5. G. W. Crabtree, M. S. Dresselhaus and M. V. Buchanan, Phys. Today, 57, 39 (2004). https://doi.org/10.1063/1.1878333
  6. I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K.-i. Katsura, Y. Katayama, S. Asoh and S. Ohta, Nat. Med., 13, 688 (2007). https://doi.org/10.1038/nm1577
  7. S. Ohta, Pharmacol. Therapeut., 144, 1-11 (2014). https://doi.org/10.1016/j.pharmthera.2014.04.006
  8. Z. D. Wei, M. B. Ji, S. G. Chen, Y. Liu, C. X. Sun, G. Z. Yin, P. K. Shen and S. H. Chan, Electrochim. Acta, 52, 3323 (2007). https://doi.org/10.1016/j.electacta.2006.10.011
  9. P. K. Dubey, A. S. K. Sinha, S. Talapatra, N. Koratkar, P. M. Ajayan and O. N. Srivastava, Int. J. Hydrogen Energy, 35, 3945 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.139
  10. P. P. Prosini, A. Pozio, S. Botti and R. Ciardi, J. Power Sourc., 118, 265 (2003). https://doi.org/10.1016/S0378-7753(03)00097-1
  11. H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E. L. G. Samuel, P. M. Ajayan and J. M. Tour, ACS Nano, 8, 10837 (2014). https://doi.org/10.1021/nn504637y
  12. S. C. Barton, Y. Sun, B. Chandra, S. White and J. Hone, Electrochem. Solid-State Lett., 10, B96 (2007). https://doi.org/10.1149/1.2712049
  13. A. Tamayol, F. McGregor and M. Bahrami, J. Power Sourc., 204, 94 (2012). https://doi.org/10.1016/j.jpowsour.2011.11.084
  14. D. Reyter, D. Belanger and L. Roue, Water Res., 44, 1918 (2010). https://doi.org/10.1016/j.watres.2009.11.037
  15. K. J. Kim, Y.-J. Kim, J.-H. Kim and M.-S. Park, Mater. Chem. Phys., 131, 547 (2011). https://doi.org/10.1016/j.matchemphys.2011.10.022
  16. L. Dobiasova, V. Stary, P. Glogar and V. Valvoda, Carbon, 37, 421 (1999). https://doi.org/10.1016/S0008-6223(98)00207-3