DOI QR코드

DOI QR Code

Fabrication of Octahedral Co3O4/Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells

염료감응 태양전지의 Pt-free 상대전극을 위한 팔면체 Co3O4/탄소나노섬유 복합체 제조

  • An, HyeLan (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, Geon-Hyoung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 안혜란 (서울과학기술대학교 신소재공학과) ;
  • 안건형 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2016.02.12
  • Accepted : 2016.03.29
  • Published : 2016.05.27

Abstract

Octahedral $Co_3O_4$/carbon nanofiber (CNF) composites are fabricated using electrospinning and hydrothermal methods. Their morphological characteristics, chemical bonding states, and electrochemical properties are used to demonstrate the improved photovoltaic properties of the samples. Octahedral $Co_3O_4$ grown on CNFs is based on metallic Co nanoparticles acting as seeds in the CNFs, which seeds are directly related to the high performance of DSSCs. The octahedral $Co_3O_4$/CNFs composites exhibit high photocurrent density ($12.73mA/m^2$), superb fill factor (62.1 %), and excellent power conversion efficiency (5.61 %) compared to those characteristics of commercial $Co_3O_4$, conventional CNFs, and metallic Co-seed/CNFs. These results can be described as stemmnig from the synergistic effect of the porous and graphitized matrix formed by catalytic graphitization using the metal cobalt catalyst on CNFs, which leads to an increase in the catalytic activity for the reduction of triiodide ions. Therefore, octahedral $Co_3O_4$/CNFs composites can be used as a counter electrode for Pt-free dye-sensitized solar cells.

Keywords

References

  1. M. Gratzel, Nature, 414, 338 (2001). https://doi.org/10.1038/35104607
  2. N-G. Park, J. Korean Ind. Eng. Chem., 15, 265 (2004).
  3. J-Y. Lin, J-H. Liao and T-C. Wei, Electrochem. Solid-State Lett., 14, D41 (2011). https://doi.org/10.1149/1.3533917
  4. J-L. Lan, Y-Y. Wang, C-C. Wan, T-C. Wei, H-P. Feng, C. Peng, H-P. Cheng, Y-H. Chang and W-C. Hsu, Curr. Appl. Phys., 10, S168 (2010). https://doi.org/10.1016/j.cap.2009.11.064
  5. S. Yun, A. Hagfeldt and T. Ma, Adv. Mater., 26, 6210 (2014). https://doi.org/10.1002/adma.201402056
  6. M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Gratzel and T. Ma, J. Am. Chem. Soc., 134, 3419 (2012). https://doi.org/10.1021/ja209657v
  7. S. Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Nair and A. S. Nair, J. Mater. Chem. A, 2, 4474 (2014). https://doi.org/10.1039/C3TA13374E
  8. T. N. Murakami and M. Gratzel, Inorg. Chim. Acta., 361, 572 (2008). https://doi.org/10.1016/j.ica.2007.09.025
  9. A. Kay and M. Gratzel, Sol. Energ. Mat. Sol. Cells, 44, 99 (1996). https://doi.org/10.1016/0927-0248(96)00063-3
  10. P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey and Q. Qiao, Energy Environ. Sci., 2, 426 (2009). https://doi.org/10.1039/b815947p
  11. T. Okumura, T. Sugiyo, T. Inoue, M. Ikegami and T. Miyasaka, J. Electrochem. Soc., 160, H155 (2013). https://doi.org/10.1149/2.029303jes
  12. H. An, G-H. An and H-J. Ahn, J. Ceram. Process. Res., 16, 208 (2015).
  13. M. Chen, L-L. Shao, X. Qian, T-Z. Ren and Z-Y. Tuan, J. Mater. Chem. C, 2, 10312 (2014). https://doi.org/10.1039/C4TC02270J
  14. C. Tan, G. Zhu, M. Hojamberdiev, K. Okada, J. Liang, X. Luo, P. Liu and Y. Liu, Appl. Catal. B: Environ., 152-153, 425 (2014). https://doi.org/10.1016/j.apcatb.2014.01.044
  15. J. W. Ko, W-H. Ryu, I-D. Kim and C. B. Park, Chem. Commun., 49, 9725 (2013). https://doi.org/10.1039/c3cc44564j
  16. P. Ramakrishnan and S. Shanmugam, Electrochim. Acta, 125, 232 (2014). https://doi.org/10.1016/j.electacta.2014.01.103
  17. Y. Aykut, ACS Appl. Mater. Interfaces, 4, 3405 (2012). https://doi.org/10.1021/am3003523
  18. G-H. An and H-J. Ahn, J. Power Sourc., 272, 828 (2014). https://doi.org/10.1016/j.jpowsour.2014.09.032
  19. X. Xiao, X. Liu, H. Zhao, D. Chen, F. Liu, J. Xiang, Z. Hu and Y. Li, Adv. Mater., 24, 5762 (2012). https://doi.org/10.1002/adma.201202271
  20. Y. Xiao, G. Han, H. Zhou, Y. Li and J-Y. Lin, Electrochim. Acta, 155, 103 (2015). https://doi.org/10.1016/j.electacta.2015.01.004
  21. H-M. Chuang, C-T. Li, M-H. Yeh, C-P. Lee, R. Vittal and K-C. Ho, J. Mater. Chem. A, 2, 5816 (2014). https://doi.org/10.1039/c4ta00011k
  22. M. Gratzel, Inorg. Chem., 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  23. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, J. Power Sourc., 181, 172 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.029
  24. J. Gong, J. Liang and K. Sumathy, Renew. Sustain. Energ. Rev., 16, 5848 (2012). https://doi.org/10.1016/j.rser.2012.04.044

Cited by

  1. Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells vol.26, pp.11, 2016, https://doi.org/10.3740/MRSK.2016.26.11.649
  2. Electrochemical Behavior of Well-dispersed Catalysts on Ruthenium Oxide Nanofiber Supports vol.24, pp.2, 2017, https://doi.org/10.4150/KPMI.2017.24.2.96