DOI QR코드

DOI QR Code

Electrochemical Properties of Fluorine-Doped Tin Oxide Nanoparticles Using Ultrasonic Spray Pyrolysis

초음파 분무 열 분해법을 통해 제조된 불소 도핑 된 주석 산화물 나노 입자의 전기화학적 특성

  • Lee, Do-Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Jung-Wook (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, Geon-Hyoung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Riu, Doh-Hyung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이도영 (서울과학기술대학교 신소재공학과) ;
  • 이정욱 (서울과학기술대학교 신소재공학과) ;
  • 안건형 (서울과학기술대학교 신소재공학과) ;
  • 류도형 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2016.03.04
  • Accepted : 2016.04.10
  • Published : 2016.05.27

Abstract

Fluorine-doped tin oxide (FTO) nanoparticles have been successfully synthesized using ultrasonic spray pyrolysis. The morphologies, crystal structures, chemical bonding states, and electrochemical properties of the nanoparticles are investigated. The FTO nanoparticles show uniform morphology and size distribution in the range of 6-10 nm. The FTO nanoparticles exhibit excellent electrochemical performance with high discharge specific capacity and good cycling stability ($620mAhg^{-1}$ capacity retention up to 50 cycles), as well as excellent high-rate performance ($250mAhg^{-1}$ at $700mAg^{-1}$) compared to that of commercial $SnO_2$. The improved electrochemical performance can be explained by two main effects. First, the excellent cycling stability with high discharge capacity is attributed to the nano-sized FTO particles, which are related to the increased electrochemical active area between the electrode and electrolyte. Second, the superb high-rate performance and the excellent cycling stability are ascribed to the increased electrical conductivity, which results from the introduction of fluorine doping in $SnO_2$. This noble electrode structure can provide powerful potential anode materials for high-performance lithiumion batteries.

Keywords

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011). https://doi.org/10.1039/c1ee01598b
  2. M. Armand and J. M. Tarascon, Nature, 451, 653 (2008).
  3. E. J. Kim and H. C. Shin, Korean J. Mater. Res., 22, 8 (2012). https://doi.org/10.3740/MRSK.2012.22.1.008
  4. J. W. Lee, W. S. Choi and H. C. Shin, Korean J. Mater. Res., 23, 680 (2013). https://doi.org/10.3740/MRSK.2013.23.12.680
  5. E. Kim, S. H. Kwon, M. S. Kim and J. C. Jung, Korean J. Mater. Res., 24, 243 (2014). https://doi.org/10.3740/MRSK.2014.24.5.243
  6. L. Ji, Z. Lin, M. Alcoutlabi and X. Zhang, Energy Environ. Sci., 4, 2682 (2011). https://doi.org/10.1039/c0ee00699h
  7. G. H. An, J. I. Sohn and H. J. Ahn, J. Mater. Chem. A., 4, 2049 (2016). https://doi.org/10.1039/C5TA10067D
  8. G. H. An and H. J. Ahn, J. Power Sourc., 272, 828 (2014). https://doi.org/10.1016/j.jpowsour.2014.09.032
  9. B. Simon, S. Flandrois, K. Guerin, A. F. Bouvier, I. Teulat and P. Biensan, J. Power Sourc., 81-82, 312 (1999). https://doi.org/10.1016/S0378-7753(99)00211-6
  10. F. Cheng, J. Liang, Z. Tao and J. Chen, Adv. Mater., 23, 1695 (2011). https://doi.org/10.1002/adma.201003587
  11. C. M. Park, J. H. Kim, H. Kim and H. J. Sohn, Chem. Soc. Rev., 39, 3115 (2010). https://doi.org/10.1039/b919877f
  12. G. H. An, S. J. Kim, K. W. Park and H. J. Ahn, ECS Solid-State Lett., 3, 21 (2014).
  13. B. H. Li, Z. Wang, L. Chen and X. Huang, Adv. Mater., 21, 4593 (2009). https://doi.org/10.1002/adma.200901710
  14. B. R, Koo, G. H. An and H. J. Ahn, J. Korean Powd. Met. Inst., 21, 108 (2014). https://doi.org/10.4150/KPMI.2014.21.2.108
  15. C. W. Kwon, G. Campet, J. Portier, A. Poquet, L. Fournes, C. Labrugere, B. Jousseaume, T. Toupance, J. H. Choy and M. A. Subramanian, Int. J. Inorg. Mater., 3, 211 (2001). https://doi.org/10.1016/S1466-6049(01)00021-6
  16. M. Kim, B. R. Koo, H. J. Ahn and T. K. Lee, Korean J. Master. Res., 25, 125 (2015). https://doi.org/10.3740/MRSK.2015.25.3.125
  17. S. I. Noh, H. J. Ahn and D. H. Riu, Ceram. Int., 38, 3735 (2012). https://doi.org/10.1016/j.ceramint.2012.01.018
  18. H. W. Ha, K. Kim, M. de Borniol and T. Toupance, J. Solid State Chem., 179, 702 (2006). https://doi.org/10.1016/j.jssc.2005.11.022
  19. S. L. dos Santos e Lucato, Lince - Linear Intercept v. 2.4, (Department of Material Science, Darmstadt University of Technology, 1999).
  20. C. Hudaya, B. Kang, H. G. Jung, W. Choi, B. J. Jeon and J. K. Lee, Carbon, 81, 835 (2015). https://doi.org/10.1016/j.carbon.2014.09.015