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Abstract 

 

The good control performance of permanent magnet linear synchronous motor (LSM) drive systems is difficult to achieve 
using linear controllers because of uncertainty effects, such as fictitious forces. A backstepping control system using adaptive 
modified recurrent Laguerre orthogonal polynomial neural network uncertainty observer (OPNNUO) is proposed to increase the 
robustness of LSM drive systems. First, a field-oriented mechanism is applied to formulate a dynamic equation for an LSM drive 
system. Second, a backstepping approach is proposed to control the motion of the LSM drive system. With the proposed 
backstepping control system, the mover position of the LSM drive achieves good transient control performance and robustness. 
As the LSM drive system is prone to nonlinear and time-varying uncertainties, an adaptive modified recurrent Laguerre 
OPNNUO is proposed to estimate lumped uncertainties and thereby enhance the robustness of the LSM drive system. The 
on-line parameter training methodology of the modified recurrent Laguerre OPNN is based on the Lyapunov stability theorem. 
Furthermore, two optimal learning rates of the modified recurrent Laguerre OPNN are derived to accelerate parameter 
convergence. Finally, the effectiveness of the proposed control system is verified by experimental results. 
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I. INTRODUCTION 

Permanent magnet linear synchronous motors (LSMs), 
which are direct-drive machines, have been widely used in 
industrial robots, semiconductor manufacturing systems, and 
machine tools [1]-[3] because of their high-performance 
servo-drive property. 

A backstepping design involves the recursive selection of 
the appropriate functions of state variables as pseudo-control 
inputs for lower dimension subsystems of an overall system. 
Each backstepping stage results in a new pseudo-control 
design, which is expressed in terms of the pseudo control 
designs from the preceding design stages. The termination of 
the procedure results in a feedback design for true control 
inputs; this outcome achieves the original design objective by 

virtue of a final Lyapunov function, which is formed by 
summing up the Lyapunov functions associated with each 
individual design stage [4], [5]. Some existing methods use 
off-line data collected from machines under static conditions, 
which change during motor operation as a result of changes 
in motor parameters. Some methods use linear models of 
machines, which may not be suitable for high-performance 
applications with uncertainties. Neural networks (NNs) show 
great potential for modeling nonlinear systems, which is 
difficult to achieve using traditional techniques owing to the 
inherent parallel structure and learning ability of such 
systems. However, NNs feature static mapping. Moreover, 
the weight updates of NNs do not utilize the internal 
information of NNs, and function approximation is sensitive 
to training data. Recurrent NNs have received increasing 
attention because of their structural advantages in the 
modeling of nonlinear systems and their dynamic system 
control [6]-[10]. These networks are capable of effectively 
identifying and controlling complex process dynamics, but 
they entail considerable computational complexity. The 
recurrent Laguerre orthogonal polynomial NN [11]-[13] 
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features dynamic mapping and demonstrates good control 
performance in the presence of uncertainties. Hence, the 
present study proposes a backstepping control system using  
adaptive modified recurrent Laguerre  OPNNUO for LSM 
drive systems. The purpose of this study is to investigate and 
implement the proposed novel approach and thereby enhance 
system robustness. 

This paper is organized as follows. The system structure of 
the LSM drive system is reviewed in Section II. A 
backstepping control design method using adaptive recurrent 
Laguerre OPNNUO is presented in Section III. The 
experimental results are illustrated in Section IV. The 
conclusions are given in Section V. 

 

II. CONFIGURATION OF LSM DRIVE SYSTEM 
 

The machine model of an LSM can be described in a 
synchronous rotating reference frame as follows [1]-[3]: 

deqqsq iRv                  (1) 

qeddsd iRv                (2) 

where 

qqq iL                    (3) 

PMddd iL                  (4) 

re P                    (5) 

and qd v v ,  are the d and q axis voltages, respectively; 

qd ii  ,  are the d and q axis currents, respectively; sR is the 

phase winding resistance; qd LL  ,  are the d and q axis 

inductances, respectively; r  is the angular velocity of the 

mover; e  is the electrical angular velocity; PM  is the 

permanent magnet flux linkage; and P  is the number of 
pole pairs. Moreover,  

 /rr v  (6) 

ere f2vPv   (7) 

where 
rv  is the linear velocity,   is the pole pitch, 

ev  is 

the electric linear velocity, and ef  is the electric frequency. 

The developed electromagnetic power is given by [2] 

  2iiLLiP3vFP eqdqdqdeee /][       (8) 

Thus, the electromagnetic force is 

   2/] [3 qdqdqde iiLLiPF      (9) 

and the mover dynamic equation is 

Lrre FDvvMF               (10) 

where eF  is the electromagnetic force, M  is the total mass 

of the moving element system, D  is the viscous friction and 
iron-loss coefficient, and LF  is the external disturbance 

term. 
The basic control approach of an LSM servo drive is based 

on field orientation [2]. The flux position in the d–q 
coordinates can be determined with Hall sensors. In (4), (8), 

and (9), if 0id  , then the d-axis flux linkage d  is fixed 

because PM  is constant for an LSM. Moreover, the 

electromagnetic force eF  is proportional to 
*
qi , which is 

determined by a closed-loop control. The rotor flux is only 
produced in the d-axis, whereas the current vector is 
generated in the q-axis for field-oriented control. As the 
generated motor force is linearly proportional to the q-axis 
current while the d-axis rotor flux is constant in (4), the 
maximum force per ampere can be achieved. The resulting 
force equation is 

 2/3 qPMe iF               (11) 

The configuration of a field-oriented LSM servo drive 

system is shown in Fig. 1, which consists of an LSM, a 

sinusoidal pulse-width-modulation (PWM)control modulator 

and current control, a field-orientation mechanism, a 

coordinate translator, a speed control loop, a position control 

loop, linear scale and Hall sensors, and three sets of 

isulated-gate bipolar transistor (IGBT) power modules 

inverter. The flux position of the permanent magnet is 

detected by the output signals of the Hall sensors denoted as 

U, V, and W. Iron disks of different sizes can be mounted on 

the mover of the LSM to change the mass of the moving 

element and viscous friction. The field-oriented mechanism 

drive system is implemented with an field-programmable 

gate array (FPGA) control system, and the control law is 

implemented with a digital signal processor (DSP) control 

system. 

With the implementation of field-oriented control [1-3], the 
LSM drive can be simplified into a control system, the block 
diagram of which is shown in Fig. 2. That is, 

*
qfe iKF                   (12) 

 2/3 PMf PK                 (13) 

DMs
sH p 


1
)(                (14) 

where fK  is the thrust coefficient, 
*
qi  is the command of 

thrust current, and s is the Laplace's operator. 
The LSM used in this study features the following: 220 V, 

3.5 A, 1 kW, and 213 N. For a convenient controller design, 
the position and speed signals in the control loop are set to 1 
V = 0.075 m and 1 V = 0.075 m/s, respectively. The 
parameters of the system are 

N/V 942.6sec/kg 56.92
Nsec/V 2025.02.7kg 

   N/A, 8.60






D
M

K f

 (15) 

The ""  symbol represents the system parameter in the
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Fig. 1. Configuration of the LSM drive system. 

 

nominal condition. 
 

III. A BACKSTEPPINGCONTROL SYSTEM DESIGN 
USING ADAPTIVE MODIFIED RECURRENT 

LAGUERRE OPNNUO  

By considering an LSM servo drive system with parameter 
variations, external load disturbances, and friction forces, we 
can rewrite (10) as 

prr Xvd              (16) 

Lapp FcubbXaaX 111 )()(        (17) 

rdY             (18) 

where 
rd  is the mover position of the LSM; 

pX is the 

mover velocity of the LSM; MDa 1 ; 01  MKb f ; 

Mc 11  ; a  and b  denote the uncertainties introduced 

by system parameters M  and D , respectively; and au  is 

the control input to the LSM drive system. By reformulating 
(17), the following can be derived: 

qubXaX app  11
          (19) 

where q  is the lumped uncertainty defined by 

Lap FcbuaXq 1         (20) 

The lumped uncertainty q  is assessed by an adaptive 

uncertainty observer and is assumed to be constant during the 
observation. The above assumption is valid in the practical 
digital processing of the observer because the sampling 
period of the observer is short enough compared with the 
variation of q . 

The control objective is to design a backstepping control 

system for the output Y  of the system shown in (18) to 

asymptotically track the reference trajectory )(tYd , which is 

md . The proposed backstepping control system is designed to 

achieve the position-tracking objective. The step-by-step 
process is described as follows. 

Step 1: For the position-tracking objective, the tracking 
error is defined as  

YYddz drm 1          (21) 

and its derivative is defined as 

pdd XYYYz  1          (22) 

The following stabilizing function is defined: 

 211 kYzk d            (23) 

where 1k and 2k  are positive constants and   dz )(1  is 

an integral action. We can ensure that the tracking error 
converges to zero using the integral action. Then, the first 
Lyapunov function 1L is chosen as 

2/2
11 zL              (24) 

The virtual tracking error  pXz2
 is defined. The 

derivative of 1L  is 

 12
2

112121111 )( zkzkzzzYzzzL d  
  (25) 

Step 2: The derivative of 2z  is now expressed as 

  pXz2  qubXa ap 11  

    qubza a121        (26) 

To design the backstepping control system, the lumped 

uncertainty q  is assumed to be bounded, i.e., qq  . Then, 

the following Lyapunov function is defined as 

L
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Fig. 2. Block diagram of the backstepping control system. 
 

2/2/ 2
2

2
212 zkLL         (27) 

Using (25) and (26), the derivative of 2L  can be derived as 

follows: 

  ][ 1212212
2

1121

22212













qubzazkzkzkzz

zzkLL

a

])([ 12112
2

11   qubzazzzk a       (28) 

According to (28), the backstepping control law au  can be 

designed as follows: 

])()([ 221231
1

1    zsgnqzazkzbua   (29) 

By substituting (29) into (28), (28) can be obtained as 

)(2
2

23
2

1122
2

23
2

112 qqzzkzkqzqzzkzkL 
2

23
2

11 zkzk  (30) 

The following term is then defined: 

2
2

23
2

11)( Lzkzkt            (31) 

Then, 

 t tztzLzzLd0 212212 ))(,)(((0)),(0)()(    (32) 

Given that (0)),(0)( 212 zzL  is bounded and that 

))(,)(( 212 tztzL  is non-increasing and bounded, 

 


t
0t

d )(lim . Moreover,  t  is bounded; thus,  t  

is uniformly continuous [14], [15]. By using Barbalat’s 

lemma [14], [15], 0t
t




)(lim . That is, 1z  and 2z  

converge to zero as t . Moreover, d
t

YtY 


)(lim ,  and 

dp
t

YXlim 


. Therefore, the backstepping control system is 

asymptotically stable. The stability of the backstepping 
control system (Fig. 2) can be guaranteed. 

Step 3: 

Given that the lumped uncertainty q  is unknown in 

practical applications, the upper bound q  is difficult to 

determine. Therefore, a modified recurrent Laguerre 
OPNNUO is proposed to adapt the value of the lumped 

uncertainty q̂ . 

A three-layer modified recurrent Laguerre OPNN, which 
comprises an input layer (the i layer), a hidden layer (the j 
layer), and an output layer (the k layer), is adopted to 
implement the proposed control system.  

2,1),)1()(( 31111   iNywNxfy
k

kikiii
      

(33) 

 
1,,1,0)),1()(( 22

1

12 


mjNyNyGy j
i

ijj 
    

(34) 

1),)((
1

0

2233 



kNywfy

m

j
jkjkk

          (35) 

1
1
1 zddx rm   and 1

1
1

1
2 Δ)1( zzzx    are the tracking error 

and tracking error change, respectively. 1
ikw  and 2

kjw are the 

recurrent weight between the output layer and the input layer 
and the connective weight between the hidden layer and the 
output layer, respectively. N denotes the number of iterations. 
The Laguerre orthogonal polynomial [11]-[13] )(xGn  is the 

argument of the polynomials with 11  x ; n is the order of 

expansion. m is the number of nodes.  is the self-connecting 

feedback gain of the hidden layer selected between 0 and 1. 

1)(0 xG , xxG 1)(1 , and 24)( 2
2  xxxG . The 

higher-order Laguerre orthogonal polynomials may be 
generated by the recursive formula 

)1/()]()()12[()( 11   hxhGxGxhxG hhh . 1
if  and 

3
kf  are the activation functions selected as linear functions. 

The recurrent modified Laguerre orthogonal polynomial NN 
output qNyk ˆ)(3   can be denoted as 

 T
k qNy  )(ˆ)(3              (36) 

where  Tmwww 2
1,1

2
11

2
10    is the collection of 

adjustable parameters of the modified recurrent Laguerre  

1k

s

2z1z 

-

+

pXrdy 

md dy  1
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b

fK

eF

rv

rd

s

1

LSM
Drive

System

LF

DMs

1



au




 
+

-

+
3k -

+

-+

Backstepping Control System

-
s/1

2k


+

+

q

 sgn

s

+1a

 1zReference
Model

*d


+

+ -



602                       Journal of Power Electronics, Vol. 16, No. 2, March 2016 

 
 

Fig. 3. Block diagram of the backstepping control system using adaptive modified recurrent Laguerre OPNNUO. 

 

orthogonal polynomial NN.  Tmyyy 2
1

2
1

2
0   , in which 

2
jy  is determined by the selected Laguerre orthogonal 

polynomials and 10 2  jy . 

To develop the adaptation laws of the modified recurrent 

Laguerre OPNNUO u, the minimum reconstructed error   

is defined as follows: 

)( *qq                   (37) 

where *  is an optimal weight vector that achieves the 

minimum reconstructed error. The absolute value of   is 

assumed to be less than a small positive constant   (i.e., 

  ). Then, a Lyapunov candidate is chosen as 

)2/()()()2/()ˆ( 1
**2

23    TLL  (38) 

where   and 1  are positive constants and ̂  is the 

estimated value of the minimum reconstructed error  . The 

estimation of the reconstructed error   involves 

compensating for the observed error induced by the modified 
recurrent Laguerre OPNNUO and further guaranteeing the 
stable characteristics of the whole control system. The 
derivative of the Lyapunov function from (38) is obtained as  

 











qubzazzzk

LL

a

T

12112
2

11

1
*

23

)(

/)(/ˆ)ˆ(   

1
* /)(/ˆ)ˆ(    T      (39) 

According to (39), a backstepping control system using 
adaptive modified recurrent Laguerre OPNNUO aa uu ˆ  is 

proposed as follows: 

])(ˆˆ)([ˆ 21231
1

1    qzazkzbuu aa  (40) 

By substituting (40) into (39), the following equation can be 
obtained:  

  TzqzqzzkzkL )(
1ˆ)ˆ(

1ˆˆ *

1
222

2
23

2
113 











 T

qqzqqzzzkzk

)(
1ˆ)ˆ(

1
))()(ˆ())((ˆ

*

1

*
2

*
22

2
23

2
11
















 T

Tzzzkzk

)(
1ˆ)ˆ(

1
)()ˆ(

*

1

*
22

2
23

2
11












   

(41) 

The adaptive laws   and ̂  are designed as follows: 

 21 z                   (42) 

2ˆ z                      (43) 

Thus, (41) can be rewritten as follows: 

0)(2
23

2
113  tzkzkL          (44) 

By using Barbalat’s lemma [14], [15], 0)( t  as t . 

That is, 1z  and 2z  converge to zero as t . As a result, 

the stability of the proposed backstepping control system 
using an adaptive modified recurrent Laguerre OPNNUO 
(Fig. 3) can be guaranteed. Then again, the guaranteed 
convergence of the tracking error to zero does not imply the 
convergence of the estimated value of the lumped uncertainty 
to the real values. The persistent excitation condition [14], 
[15] should be satisfied for the estimated value to converge to 
its theoretical value. 

According to the Lyapunov stability theorem and gradient 
descent method, an on-line parameter training methodology 
of the modified recurrent Laguerre OPNN can be derived and 
trained effectively. Then, the parameter of the adaptive law 

  shown in (42) can be computed with the gradient descent 

1k

s

2z1z 

-
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method to select the appropriate learning rate. Parameter 
convergence can be guaranteed, but the convergence speed is 
relatively slow because of the low learning rate. By contrast, 
parameter convergence may oscillate because of a high 
learning rate. In efficiently training the modified recurrent 
Laguerre OPNN, two optimal learning rates are derived to 
achieve a rapid convergence of the output tracking error. The 

adaptation law   shown in (42) can then be rewritten as 

21
2 zwkj              (45) 

To effectively train the parameters of the modified recurrent 
Laguerre OPNN, recursively obtaining a gradient vector is 
very important. Each component can be defined as the 
derivative of a cost function in the training algorithm. The 
gradient vector is calculated in the direction opposite to the 
flow of the output of each node by means of the chain rule. 
To describe the on-line training algorithm of the modified 
recurrent Laguerre OPNN, a cost function is defined as [10] 

2/2
21 zE                   (46) 

The adaptation law of the connective weight using the 
gradient descent method can be represented as 

2
3
1

12

3

3
1

121
2

j
kkj

k

k
kj y

y

E

w

y

y

E
zw








      (47) 

The above Jacobian term of the controlled system can be 

rewritten as 
2

3
1 zyE k  . The recurrent weight 1

ikw  

from the Jacobian term of the controlled system can be 
updated as 

ijkj
ik

i

i

j

j

k

kik
ik PGwz

w

y

y

y

y

y

y

E

w

E
w 2

221

1

1

2
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where 11
ikii wyP   can be calculated from (33). Then, 

two optimal learning rates are derived to ensure the 
convergence of the output tracking error. The convergence 
analysis is provided in the following two theorems. 
Theorem 1: Assume that 1  is the learning rate of the 

connective weight between the hidden layer and the output 
layer in the modified recurrent Laguerre OPNN. Meanwhile, 
let maxQ1  be defined as  NQmaxQ Nmax 11  , in which 

  23
1 kjk wyNQ   and   is the Euclidean norm in n . 

If 1  is chosen as [10, 11], then 
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(49) 

The convergence of the output tracking error is guaranteed. 
Furthermore, the optimal learning rate, which achieves rapid 
convergence, can be obtained. 
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Proof: Given that 
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Let a discrete-type Lyapunov function be selected as 

   NzNL 2
24 2

1
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The change in the Lyapunov function is obtained by 
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Next, the error difference can be represented by 
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in which )(Δ 2 Nz  is the output error change and 2Δ kjw  

represents the change in weight. Then, (54) can be obtained 
by means of (45), (46), (47), and (51). 
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Therefore, 
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By substituting (53) into (57),  NL 4Δ  can be rewritten as 
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If 1  is chosen as })](/[)/{(20 2
22

2
max11 NzBzQ a  , then 

the Lyapunov stability of   04 NL  and 0Δ 4 L  is 

guaranteed. Then, the output tracking error converges to zero 
as 0t , which completes the proof of the theorem. 

Furthermore, the optimal learning rate, which achieves rapid 
convergence, corresponds to [16], [17] 
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(60) 

which comes from the derivative of (58) with respect to 1

and equals zero. The results indicate the optimal learning rate 
can be tuned on-line instantly. 

Theorem 2: Assume that 2  is the learning rate of the 

recurrent weight between the output layer and the input layer 
in the modified recurrent Laguerre OPNN. Meanwhile, let 

max2Q  be defined as  NQmaxQ N 2max2  , where 
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  13
2 ikk wyNQ   and   is the Euclidean norm in n . If 

2 is chosen as [10, 11], then 
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The convergence of the output tracking error is thereby 
guaranteed. Furthermore, the optimal learning rate, which 
achieves rapid convergence, can be obtained as 
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Proof: Given that 

  )1()()( 312
1

3

2  NyNxGw
w

y
NQ kijkj

ik

k





     

 (63) 

Let a discrete-type Lyapunov function be selected as (52), 
and let the change in the Lyapunov function be obtained with 
(53). Then, the error difference can be represented by 
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where )(Δ 2 Nz  is the output error change and 1Δ ikw  

represents the change in weight. Then (64), by using (46), 
(48), and (63), can be represented as 
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Therefore, 
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By means of (53) and (64) to (67),  NL4Δ  can be 

rewritten as  
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If 2  is chosen as })](/[)/{(20 2
22

2
max22 NzzBQ a  , 

then the Lyapunov stability of   04 NL  and 0)(Δ 4 NL  

is guaranteed such that the output tracking error converges to 
zero as 0t . At this point, the proof of the theorem is 

complete. Moreover, the optimal learning rate, which 
achieves rapid convergence, corresponds to [16], [17] 
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which comes from the derivative of (68) with respect to 2  

and equals zero. This result shows that the optimal learning 
rate can be tuned on-line instantly.  

In summary, the on-line tuning algorithm of the modified 

recurrent Laguerre OPNN is based on the adaptation laws 

(47) and (48) for the connective weight adjustment and 

recurrent weight adjustment with two optimal learning rates 

in (50) and (62), respectively. Moreover, the modified 

recurrent Legendre OPNN weight estimation errors are 

fundamentally bounded [18]. As long as the modified 

recurrent Laguerre OPNN weight estimation errors are 

bounded, the control signal is bounded. 
 

IV. EXPERIMENTAL RESULTS 

Experimental results are provided to demonstrate the 

control performance of the LSM drive system. A photo of the 

experimental setup is shown in Fig. 4. A host PC downloads 

the program running on DSP. The proposed controllers are 

implemented with the DSP control system. The 

current-controlled PWM VSI is implemented with the IGBT 

power modules with a switching frequency of 15 kHz. A DSP 

control board includes multi-channels of D/A and encoder 

interface circuits. The field-oriented mechanism drive system 

is implemented with the FPGA control system, and the 

control law is implemented with the DSP control system. 

 The parameters of the backstepping control system are 

2.21 k , 7.12 k , and 3.23 k  through some 

heuristic knowledge [20-22] resulting from the periodic step 

command from 0 mm to 84 mm at the nominal case for 

position tracking. In this way, good transient and steady-state 

control performance is achieved. The parameters of the 

backstepping control system using adaptive modified 

recurrent Laguerre OPNNUO are 2.21 k , 7.12 k , 

3.23 k , and 5.0 according to heuristic knowledge [4-5] 

resulting from the periodic step command from 0 mm to 84 

mm at the nominal case for position tracking. In this way, 

good transient and steady-state control performance is 

achieved. First, a second-order transfer function in the 

following form with a rise time of 0.1 s is chosen as the 

reference model [19] by using the reduction of order method 

for the periodical step command: 
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The control objective is to control the mover such that it  
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Fig. 4. Photo of the experimental setup. 
 

 
Fig. 5. Experimental results of the backstepping control system 
attributed to the periodic step command from 0 mm to 84 mm in 
the nominal case. (a) Position response of the mover. (b) 
Response of control effort. 

 

 
Fig. 6. Experimental results of the backstepping control system 
attributed to the periodic step command from 0 mm to 84 mm in 
the parameter disturbance case. (a) Position response of the 
mover. (b) Response of control effort. 

 
Fig. 7. Experimental results of the backstepping control system 
attributed to periodic sinusoidal command from –84 mm to 84 
mm at the nominal case. (a) Position response of the mover. (b) 
Response of control effort. 

 

 
Fig. 8. Experimental results of backstepping control system 
attributed to the periodic sinusoidal command from −84 mm to 
84 mm in the parameter disturbance case. (a) Position response 
of the mover. (b) Response of control effort. 

 
moves 84 mm periodically. Then, when the command is a 

sinusoidal reference trajectory, the reference model is set as a 

unit gain. The sampling interval of the control processing in 

the experiment is set at 1 ms. To show the effectiveness of 

the control system with a small number of neurons, the 

modified recurrent Laguerre OPNN is equipped with two, 

four, and one neuron(s) in the input layer, hidden layer, and  
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Fig. 9. Experimental results of the proposed backstepping control 
system using adaptive modified recurrent Laguerre OPNNUO 
attributed to the periodic step command from 0 mm to 84 mm in 
the nominal case. (a) Position response of the mover. (b) 
Response of control effort. 
 

 
Fig. 10. Experimental results of the proposed backstepping 
control system using adaptive modified recurrent Laguerre 
OPNNUO attributed to the periodic step command from 0 mm to 
84 mm in the parameter disturbance case. (a) Position response 
of the mover. (b) Response of control effort. 
 

output layer, respectively. The parameter adjustment process 

remains active for the duration of the experiment. 
Some experimental results are provided to demonstrate the 

control performance of the proposed control system. Two test 

conditions are provided in the experiment: the nominal case  

 
Fig. 11. Experimental results of the proposed backstepping 
control system using adaptive modified recurrent Laguerre 
OPNNUO attributed to the periodic sinusoidal command from 
−84 mm to 84 mm in the nominal case. (a) Position response of 
the mover. (b) Response of control effort. 

 

 
Fig. 12. Experimental results of the proposed backstepping 
control system using adaptive modified recurrent Laguerre 
OPNNUO attributed to the periodic sinusoidal command from 
−84 mm to 84 mm in the parameter disturbance case. (a) Position 
response of the mover. (b) Response of control effort. 

 

and parameter variation case. The parameter variation case 

involves the addition of one 8.1 kg iron disk to the mass of 

the mover, i.e., the total mass is three times the nominal mass. 

The experimental results of the backstepping control system 

attributed to the periodic step command from 0 mm to 84 mm  
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TABLE I  
CONTROL PERFORMANCE COMPARISON OF CONTROL SYSTEMS 

Control System    
and Four Test 

Cases 
 
Performance 

Backstepping Control System 

caused by periodic step 
command from 0 mm to 84 
mm in the nominal case 

caused by periodic step 
command from 0 mm to 84 
mm in the parameter
disturbance case 

caused by periodic sinusoidal 
command from −84 mm to 84 
mm in the nominal case 

caused by periodic sinusoidal 
command from −84 mm to 84 
mm in the parameter
disturbance case 

Maximum error of 1z  0.2 mm 1 mm 0.1 mm 0.3 mm 

RMS error of 1z  0.05 mm 0. 25 mm 0.05 mm 0.15 mm 

Control System   
and Four Test   

Cases 
 
Performance 

Backstepping Control System Using Adaptive Modified Recurrent Laguerre OPNNUO 

caused by periodic step 
command from 0 mm to 84 
mm in the nominal case 

caused by periodic step 
command from 0 mm to 84 
mm in the parameter
disturbance case 

caused by periodic sinusoidal 
command from −84 mm to 84 
mm in the nominal case 

caused by periodic sinusoidal 
command from −84 mm to 84 
mm in the parameter
disturbance case 

Maximum error of 1z  0.2 mm 0.25 mm 0.1 mm 0.15 mm 

RMS error of 1z  0.05 mm 0.05 mm 0.05 mm 0.05 mm 

 
TABLE II  

CHARACTERISTIC PERFORMANCE COMPARISON OF CONTROL SYSTEMS 
Control System 

Characteristic Performance 
Backstepping Control System Backstepping Control System Using Adaptive 

Modified Recurrent Laguerre OPNNUO 
Dynamic response Fast Fast 
Rejection of parameter disturbance Good Best 
Convergence speed Slow (tracking error response at   1 mm 

within 0.5 s) 
Fast (tracking error response at 1 mm within 
0.05 s)  (varying learning Rate) 

Load regulation capability Good Best 
Learning rate None Varies (optimal learning rate) 
Control effort Large  Small  
Chattering Large  Small 

 

in the nominal case and parameter variation case are shown in 
Figs. 5 and 6, respectively. 

The position responses of the mover under the nominal 
case and parameter variation case are shown in Figs. 5(a) and 
6(a), respectively, and the associated control efforts are 
shown in Figs. 5(b) and 6(b), respectively. The experimental 
results of the backstepping control system attributed to the 
periodic sinusoidal command from −84 mm to 84 mm in the 
nominal case and parameter variation case are shown in Figs. 
7 and 8, respectively. The position responses of the mover 
under the nominal case and parameter variation case are 
shown in Figs. 7(a) and 8(a), respectively, and the associated 
control efforts are shown in Figs. 7(b), and 8(b), respectively. 
Although favorable tracking responses can be obtained by the 
backstepping control system, the chattering in the control 
efforts is critical because of the large control gain. 

The experimental results of the proposed backstepping 
control system using adaptive modified recurrent Laguerre 
OPNNUO attributed to the periodic step command from 0 
mm to 84 mm in the nominal case and parameter variation 
case are shown in Figs. 9 and 10, respectively. 

The position responses of the mover in the nominal case 
and parameter variation case are shown in Figs. 9(a) and 
10(a), respectively, and the associated control efforts are 
shown in Figs. 9(b) and 10(b), respectively. The experimental 
results of the proposed backstepping control system using 

adaptive modified recurrent Laguerre OPNNUO attributed to 

the periodic sinusoidal command from −84 mm to 84 mm in 
the nominal case and parameter variation case are shown in 
Figs. 11 and 12, respectively. The position responses of the 
mover in the nominal case and parameter variation case are 
shown in Figs. 11(a) and 12(a), respectively, and the 
associated control efforts are shown in Figs. 11(b) and 12(b), 
respectively. 

However, the robust control performance of the proposed 
backstepping control system using adaptive modified 
recurrent Laguerre OPNNUO under the occurrence of 
parameter variation at different trajectories is obvious owing 
to the on-line adaptive adjustment of the modified recurrent 
Laguerre OPNN. As indicated by the experimental results, 
the control performance of the proposed backstepping control 
system using adaptive modified recurrent Laguerre OPNNUO 
is better than that of the backstepping control system for the 
tracking of periodic steps and sinusoidal commands. 

The comparison of the control performances of the 
backstepping control system and the proposed backstepping 
control system using adaptive modified recurrent Laguerre 
OPNNUO with two optimal learning rates is summarized in  
Table I with respect to the experimental results of four test 
cases. As shown in the table, the proposed backstepping 
control system using adaptive modified recurrent Laguerre 
OPNNUO results in smaller tracking errors in comparison 
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with the backstepping control system. According to the 
tabulated measurements, the proposed backstepping control 
system using adaptive modified recurrent Laguerre OPNNUO 
indeed yields superior control performance. The comparison 
of the characteristic performances of the backstepping control 
system and the proposed backstepping control system using 
adaptive modified recurrent Laguerre OPNNUO is 
summarized in Table II with respect to the experimental 
results. As shown in the table, the various performances of 
the proposed backstepping control system using adaptive 
modified recurrent Laguerre OPNNUO are superior to those 
of the backstepping control system. 

 

V. CONCLUSION 

A backstepping control system using adaptive modified 
recurrent Laguerre OPNNUO is proposed to control LSM 
drives for the tracking of periodic reference inputs. First, a 
field-oriented mechanism is applied to formulate the dynamic 
equation of the LSM servo drive. Then, the proposed 
backstepping control system using adaptive modified 
recurrent Laguerre OPNNUO is developed to control the 
LSM drive with parameter variations. With the backstepping 
control system, the mover position of the LSM drive achieves 
good transient control performance and robustness to 
uncertainties for the tracking of periodic reference trajectories. 
In increasing the robustness of the LSM drive, an adaptive 
modified recurrent Laguerre OPNNUO is proposed to 
estimate the required lumped uncertainty. The on-line 
parameter training methodology of the modified recurrent 
Laguerre OPNN is based on the Lyapunov stability theorem. 
Two optimal learning rates of the modified recurrent 
Laguerre OPNN are derived to accelerate parameter 
convergence. The effectiveness of the proposed control 
scheme is verified by experimental results. 
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