598 Journal of Power Electronics, Vol. 16, No. 2, pp. 598-609, March 2016

JPE 16-2-20

http://dx.doi.org/10.6113/JPE.2016.16.2.598
ISSN(Print): 1598-2092 / ISSN(Online): 2093-4718

A Backstepping Control of LSM Drive Systems
Using Adaptive Modified Recurrent Laguerre
OPNNUO

Chih-Hong Lin’

"Department of Electrical Engineering, National United University, Miaoli, Taiwan

Abstract

The good control performance of permanent magnet linear synchronous motor (LSM) drive systems is difficult to achieve
using linear controllers because of uncertainty effects, such as fictitious forces. A backstepping control system using adaptive
modified recurrent Laguerre orthogonal polynomial neural network uncertainty observer (OPNNUO) is proposed to increase the
robustness of LSM drive systems. First, a field-oriented mechanism is applied to formulate a dynamic equation for an LSM drive
system. Second, a backstepping approach is proposed to control the motion of the LSM drive system. With the proposed
backstepping control system, the mover position of the LSM drive achieves good transient control performance and robustness.
As the LSM drive system is prone to nonlinear and time-varying uncertainties, an adaptive modified recurrent Laguerre
OPNNUO is proposed to estimate lumped uncertainties and thereby enhance the robustness of the LSM drive system. The
on-line parameter training methodology of the modified recurrent Laguerre OPNN is based on the Lyapunov stability theorem.
Furthermore, two optimal learning rates of the modified recurrent Laguerre OPNN are derived to accelerate parameter
convergence. Finally, the effectiveness of the proposed control system is verified by experimental results.
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I INTRODUCTION virtue of a final Lyapunov function, which is formed by

Permanent magnet linear synchronous motors (LSMs),
which are direct-drive machines, have been widely used in
industrial robots, semiconductor manufacturing systems, and
machine tools [1]-[3] because of their high-performance
servo-drive property.

A backstepping design involves the recursive selection of
the appropriate functions of state variables as pseudo-control
inputs for lower dimension subsystems of an overall system.
Each backstepping stage results in a new pseudo-control
design, which is expressed in terms of the pseudo control
designs from the preceding design stages. The termination of
the procedure results in a feedback design for true control
inputs; this outcome achieves the original design objective by
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summing up the Lyapunov functions associated with each
individual design stage [4], [5]. Some existing methods use
off-line data collected from machines under static conditions,
which change during motor operation as a result of changes
in motor parameters. Some methods use linear models of
machines, which may not be suitable for high-performance
applications with uncertainties. Neural networks (NNs) show
great potential for modeling nonlinear systems, which is
difficult to achieve using traditional techniques owing to the
inherent parallel structure and learning ability of such
systems. However, NNs feature static mapping. Moreover,
the weight updates of NNs do not utilize the internal
information of NNs, and function approximation is sensitive
to training data. Recurrent NNs have received increasing
attention because of their structural advantages in the
modeling of nonlinear systems and their dynamic system
control [6]-[10]. These networks are capable of effectively
identifying and controlling complex process dynamics, but
they entail considerable computational complexity. The
recurrent Laguerre orthogonal polynomial NN [11]-[13]
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features dynamic mapping and demonstrates good control
performance in the presence of uncertainties. Hence, the
present study proposes a backstepping control system using
adaptive modified recurrent Laguerre OPNNUO for LSM
drive systems. The purpose of this study is to investigate and
implement the proposed novel approach and thereby enhance
system robustness.

This paper is organized as follows. The system structure of
the LSM drive system is reviewed in Section II. A
backstepping control design method using adaptive recurrent
Laguerre OPNNUO is presented in Section III. The
experimental results are illustrated in Section IV. The
conclusions are given in Section V.

II. CONFIGURATION OF LSM DRIVE SYSTEM

The machine model of an LSM can be described in a
synchronous rotating reference frame as follows [1]-[3]:

Vg = Riq +Aq + @44 (1)
Vg = Rgig + A — 0,44 )
where
Aq = Lyig 3)
Ag = Lyig + Apy 4
w, = Pw, (5)

and Vg,V are the d and q axis voltages, respectively;

las lg are the d and q axis currents, respectively; R, is the
phase winding resistance; Ly, Lq are the d and q axis

inductances, respectively; @r is the angular velocity of the

mover; @e is the electrical angular velocity; Apw s the
permanent magnet flux linkage; and P is the number of
pole pairs. Moreover,
o, =7V, /T (6)
v, =Pv, =27 f, @
where v, is the linear velocity, 7 is the pole pitch, v, is
the electric linear velocity, and f, is the electric frequency.
The developed electromagnetic power is given by [2]
P, = F.v, =3P[4i, +(Ls — L, JigigJo, /2 (®)
Thus, the electromagnetic force is
F, = 32P[ i, + (Ly — Ly )igig]/ 27 )
and the mover dynamic equation is
Fe = MV, +Dv, + F, (10)
where F, is the electromagnetic force, M is the total mass
of the moving element system, D is the viscous friction and
iron-loss coefficient, and F, is the external disturbance

term.
The basic control approach of an LSM servo drive is based

on field orientation [2]. The flux position in the d-q
coordinates can be determined with Hall sensors. In (4), (8),

and (9), if i; =0, then the d-axis flux linkage Ad s fixed

because Apu is constant for an LSM. Moreover, the

electromagnetic force Fe s proportional to i; , which is
determined by a closed-loop control. The rotor flux is only
produced in the d-axis, whereas the current vector is
generated in the g-axis for field-oriented control. As the
generated motor force is linearly proportional to the g-axis
current while the d-axis rotor flux is constant in (4), the
maximum force per ampere can be achieved. The resulting
force equation is
F. = 37doyi, / 27 (11

The configuration of a field-oriented LSM servo drive
system is shown in Fig. 1, which consists of an LSM, a
sinusoidal pulse-width-modulation (PWM)control modulator
and current control, a field-orientation mechanism, a
coordinate translator, a speed control loop, a position control
loop, linear scale and Hall sensors, and three sets of
isulated-gate bipolar transistor (IGBT) power modules
inverter. The flux position of the permanent magnet is
detected by the output signals of the Hall sensors denoted as
U, V, and W. Iron disks of different sizes can be mounted on
the mover of the LSM to change the mass of the moving
element and viscous friction. The field-oriented mechanism
drive system is implemented with an field-programmable
gate array (FPGA) control system, and the control law is
implemented with a digital signal processor (DSP) control
system.

With the implementation of field-oriented control [1-3], the
LSM drive can be simplified into a control system, the block
diagram of which is shown in Fig. 2. That is,

F, = Kii, (12)

K¢ =37PApy /27 (13)
1

- 14

M= 15D (1

where K is the thrust coefficient, iq is the command of

thrust current, and s is the Laplace's operator.

The LSM used in this study features the following: 220 V,
3.5 A, 1 kW, and 213 N. For a convenient controller design,
the position and speed signals in the control loop are set to 1
V = 0075 m and 1 V = 0.075 m/s, respectively. The
parameters of the system are

K =60.8N/A,
M =2.7kg = 0.2025 Nsec/V (15)
D =92.56 kg /sec = 6.942 N/V

"

n .
The — symbol represents the system parameter in the
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Fig. 1. Configuration of the LSM drive system.

nominal condition.

III. A BACKSTEPPINGCONTROL SYSTEM DESIGN
USING ADAPTIVE MODIFIED RECURRENT

LAGUERRE OPNNUO

By considering an LSM servo drive system with parameter
variations, external load disturbances, and friction forces, we
can rewrite (10) as

d =V, =X, (16)
X, =(@ +Aa)X , + (b, +Ab)u, +¢,F_ 7
Y =d, (18)

where d, is the mover position of the LSM; Xp is the
mover velocity of the LSM; a, =-D/M ; blsz/M >0;
¢,=—-1/M; Aa and Ab denote the uncertainties introduced

by system parameters M and D, respectively; and u, is

the control input to the LSM drive system. By reformulating
(17), the following can be derived:

X, =a;X,+bu, +q (19)
where q is the lumped uncertainty defined by
g =AaX, +Abu, +¢,F (20)

The lumped uncertainty q is assessed by an adaptive

uncertainty observer and is assumed to be constant during the
observation. The above assumption is valid in the practical
digital processing of the observer because the sampling
period of the observer is short enough compared with the
variation of .

The control objective is to design a backstepping control

system for the output Y of the system shown in (18) to

asymptotically track the reference trajectory Yq (t), which is
d,, - The proposed backstepping control system is designed to

achieve the position-tracking objective. The step-by-step
process is described as follows.

Step 1: For the position-tracking objective, the tracking
error is defined as

zy=dp—d, =Y4 -V (21)
and its derivative is defined as
=Yg =Y =Yg = X, (22)
The following stabilizing function is defined:
n=kz +Y4 +kyo (23)

where k;and k, are positive constants and &=z (r)dz is

an integral action. We can ensure that the tracking error
converges to zero using the integral action. Then, the first
Lyapunov function |, is chosen as

(24)
is defined. The

L, =z2/2
The virtual tracking error gz, = X,-n

derivative of L, is

L=22 =20 -2,-n=-22,-kz’ -k z0 (25
Step 2: The derivative of z, is now expressed as
iy =X, -n=aX, +bu, +q-7

=a,(z, +7)+bu, +q-7 (26)

To design the backstepping control system, the lumped

uncertainty ¢ is assumed to be bounded, i.e., |q| <{. Then,

the following Lyapunov function is defined as
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Fig. 2. Block diagram of the backstepping control system.

Ly =L +kyo?/2+25/2 27)
Using (25) and (26), the derivative of L, can be derived as
follows:
L, =L, +k,00 + 12,2,
=-2,2, -k2,” —ky2,0 + k06 + 2,[a, (2, +77)+bu, +q—7]
= k7% + 252 +a(2y +7) + by + q—17] (28)
According to (28), the backstepping control law y, can be
designed as follows:
Ug = by [z — K32y —ay (25 + 1) = Tsgn(z3) + 7] (29)
By substituting (29) into (28), (28) can be obtained as

Lz = _k1212 —ks Zz2 + qu—‘zz‘q S—klzl2 —ks Zzz —‘22‘(5—‘(1‘)

< —kjz," —ky z,° (30)
The following term is then defined:
s =k 2,7 +k;y 2,2 <-L, (31
Then,
[o#(0) d7 <Ly (2(0). () - Lz V.7, (1) (32)
Given that L,(7(0),z,(0)) is bounded and that

L, (z,(t), 2, (1)) is  non-increasing  and  bounded,

limjé¢(f)dr<oo. Moreover, ¢(t) is bounded; thus, g(t)
t—oowo

is uniformly continuous [14], [15]. By using Barbalat’s
lemma [14], [I5], limg(t)=0 . That is, Z; and Z,
t—o0
converge to zero as t—»oo. Moreover, lim Y (t)=Y,, and
t—oo

lim X o = Y 4 Therefore, the backstepping control system is

t—>w
asymptotically stable. The stability of the backstepping
control system (Fig. 2) can be guaranteed.
Step 3:
Given that the lumped uncertainty ( is unknown in

practical applications, the upper bound T is difficult to

determine. Therefore, a modified recurrent Laguerre
OPNNUO is proposed to adapt the value of the lumped

uncertainty (.

A three-layer modified recurrent Laguerre OPNN, which
comprises an input layer (the i layer), a hidden layer (the j
layer), and an output layer (the k layer), is adopted to
implement the proposed control system.

W= 6 AT NW v (N =D), =12 (33)
2

Vi =Gy (N)+ A yf(N=1), j=0. 1 m-1 (34)

m-1
Vi = fﬁ(_zow%,-y%m)), k=1 (€R)

j=
x =d,-d, =z, and x}=z,(1-z7")=Az, are the tracking error
and tracking error change, respectively. wj, and Wlfj are the
recurrent weight between the output layer and the input layer
and the connective weight between the hidden layer and the

output layer, respectively. N denotes the number of iterations.
The Laguerre orthogonal polynomial [11]-[13]G,(x) is the

argument of the polynomials with —1<x<1; n is the order of
expansion. m is the number of nodes. g is the self-connecting
feedback gain of the hidden layer selected between 0 and 1.
Gy(X)=1, G(X)=1-x, and G,(x)=x*—-4x+2. The
higher-order Laguerre orthogonal polynomials may be
generated by the recursive formula
Gha (X) =[(2h+1-X)Gy,(X) —hGy_ (X)]/(h+1) . ! and
fo are the activation functions selected as linear functions.
The recurrent modified Laguerre orthogonal polynomial NN
output y}(N)=g can be denoted as

yi(N)=d(0)=o0'y (36)
where o= W2 W2 e w2, I]T is the collection of

adjustable parameters of the modified recurrent Laguerre
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Fig. 3. Block diagram of the backstepping control system using adaptive modified recurrent Laguerre OPNNUO.

orthogonal polynomial NN. y=[y2 y?......y2 . in which

ng is determined by the selected Laguerre orthogonal
polynomials and (< yj? <1-

To develop the adaptation laws of the modified recurrent
Laguerre OPNNUO u, the minimum reconstructed error g
is defined as follows:

e=q-q(o ) (37
where 0" is an optimal weight vector that achieves the
minimum reconstructed error. The absolute value of & is

assumed to be less than a small positive constant £ (ie.,

|5| <&). Then, a Lyapunov candidate is chosen as

Ly=L, +(£-)2/(26)+(0-0) (0-0)/2y) (38)

where & and )| are positive constants and £ is the

estimated value of the minimum reconstructed error &. The
the
compensating for the observed error induced by the modified
recurrent Laguerre OPNNUO and further guaranteeing the
stable characteristics of the whole control system. The
derivative of the Lyapunov function from (38) is obtained as

estimation  of reconstructed error &  involves

=L, +(E-e)é/s+(-0")6/y

=—kiz? + 5[ 2+ a;(z5 + ) + byug + 9 —77]
(39)
According to (39), a backstepping control system using

+(E-6)éls+(0-0")o/y

adaptive modified recurrent Laguerre OPNNUO u, =0, is
proposed as follows:

Uy =0, =by'[2, — k32, 8y (2, +7)—€—G(0) +77]  (40)

By substituting (40) into (39), the following equation can be
obtained:

Ly = k2,2 —Kk3 2,2 + 2,0 - zzq722§+é(éfg)§+L(ofo*)To
N

=—k2? ~k3 2,” ~2)¢ +2,(4-(0 )~ 2,(4(©)~ (0 )
+—(6—)é+—(0-0") 6
9 "

= —k1212 - k3222 - Zz(é —8) - 22(0—0*)T\|I

e 2 (41)
+—(—-¢)é+—(00-0) 0
o 7
The adaptive laws O and é are designed as follows:
0=712¥ (42)
i=651, (43)
Thus, (41) can be rewritten as follows:
Ly = k2, —k; 2,> =) <0 (44)

By using Barbalat’s lemma [14], [15], ¢(t) >0 as t—o.
Thatis, z, and z, converge to zero as t—oo. As aresult,

the stability of the proposed backstepping control system
using an adaptive modified recurrent Laguerre OPNNUO
(Fig. 3) can be guaranteed. Then again, the guaranteed
convergence of the tracking error to zero does not imply the
convergence of the estimated value of the lumped uncertainty
to the real values. The persistent excitation condition [14],
[15] should be satisfied for the estimated value to converge to
its theoretical value.

According to the Lyapunov stability theorem and gradient
descent method, an on-line parameter training methodology
of the modified recurrent Laguerre OPNN can be derived and
trained effectively. Then, the parameter of the adaptive law

0 shown in (42) can be computed with the gradient descent
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method to select the appropriate learning rate. Parameter
convergence can be guaranteed, but the convergence speed is
relatively slow because of the low learning rate. By contrast,
parameter convergence may oscillate because of a high
learning rate. In efficiently training the modified recurrent
Laguerre OPNN, two optimal learning rates are derived to
achieve a rapid convergence of the output tracking error. The

adaptation law O shown in (42) can then be rewritten as

WI%j =7 20LV¥ (45)
To effectively train the parameters of the modified recurrent
Laguerre OPNN, recursively obtaining a gradient vector is
very important. Each component can be defined as the
derivative of a cost function in the training algorithm. The
gradient vector is calculated in the direction opposite to the
flow of the output of each node by means of the chain rule.
To describe the on-line training algorithm of the modified
recurrent Laguerre OPNN, a cost function is defined as [10]

E =23/2 (46)
The adaptation law of the connective weight using the

gradient descent method can be represented as

) SE, Oy} E
Wl%j =71 22WA-7) ; y; =-7 QY? (47)
Yk oW I Yk

The above Jacobian term of the controlled system can be

rewritten as é’El/é’YE =-z,

from the Jacobian term of the controlled system can be
updated as

. The recurrent weight wi,

Wy, TEL__ OBV Y] oyl
ik = - 352 -1 A1
W Y O Y OYi Wy

where P = o"yil / 5Wi1k can be calculated from (33). Then,

(43)

2
=72 22WGjR

two optimal learning rates are derived to ensure the
convergence of the output tracking error. The convergence
analysis is provided in the following two theorems.

Theorem 1: Assume that y; is the learning rate of the

connective weight between the hidden layer and the output
layer in the modified recurrent Laguerre OPNN. Meanwhile,
let Qe be defined as Q. =maxy|Q(N), in which

Q(N)= ayﬁ/awlfj and || is the Euclidean norm in R".
If y, ischosenas[10, 11], then
2

(Qimax )’ [22Ba /25 (N)]? (49)
The convergence of the output tracking error is guaranteed.

0<y <

Furthermore, the optimal learning rate, which achieves rapid
convergence, can be obtained.

71 = 1/H(Qimax )2[22B4 /23 (N)]? ] (50)
Proof: Given that
ay; (51)
a”wfj

Qi(N)= Y%

Let a discrete-type Lyapunov function be selected as
1 2
|—4(N)=522(N) (52)
The change in the Lyapunov function is obtained by
ALN)=La(N+1)-Ly(N) =2 3N +1)-23(n)] - D

Next, the error difference can be represented by

T
z,(N+1)=2,(N)+Az,(N)= ZZ(N)+|:aZZ(2N )‘| AW% (54)

kj
in which Az,(N) is the output error change and Aw%j

represents the change in weight. Then, (54) can be obtained
by means of (45), (46), (47), and (51).

3
925(N) _92,(N) 9E; 9Yi _ 25B,4 0,(N) (55)
owly OB oy owgg  22(N)

(N +1)= zz(N)—{ZzB""Q]W(N)} 7 5BaQi(N) 0

2»(N)
Therefore,
a0+ )= a0 1 fesBa 2200 (0o, ()]
<2t - 71 eaBa /z2<N))ZQ,T(N)o,<N)\ 7

By substituting (53) into (57), AL,(N) can be rewritten as
1 2
ALN)=L [, [ o (n)eu ()
2
'{VI[ZZBa/Zz(N)] QlT(N)Q1(N)—2}

< %71 [ZzBa]z(leax(N))z (58)

2
{71 [zzBa/zz(N)] (leaX(N))z—2}
If y, is chosen as 0<y; <2/{(Q max)’[22Ba/25(N)I*}, then
the Lyapunov stability of L4(N)>O and AL, <0 is
guaranteed. Then, the output tracking error converges to zero
as t—0, which completes the proof of the theorem.

Furthermore, the optimal learning rate, which achieves rapid
convergence, corresponds to [16], [17]

277 {(Qimax ) [22Ba /2, (NP1 =2 =0 (59)
ie.,

7 =1{Qima) 12282/ 22(NIP} = 1/{Qima)* (B2)*}  (60)
which comes from the derivative of (58) with respect to
and equals zero. The results indicate the optimal learning rate
can be tuned on-line instantly.

Theorem 2: Assume that y, is the learning rate of the
recurrent weight between the output layer and the input layer

in the modified recurrent Laguerre OPNN. Meanwhile, let

Qomax be defined as Qg .« EmaXNHQz(Nj , Where
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QZ(N)zﬁyi/é\N_lk and HH is the Euclidean norm in R". If
[

75 1s chosen as [10, 11], then

2
(Q2max ) [22Ba / 25 (N))? (61)
The convergence of the output tracking error is thereby

guaranteed. Furthermore, the optimal learning rate, which
achieves rapid convergence, can be obtained as

72 = UI(Qamax)*[22Ba/ 2,(N)*] (62)
Proof: Given that

0<y, <

N _ s 1 3
Q2(N)=——=wgG;(xi (N)yg (N ~1)
Wy
Let a discrete-type Lyapunov function be selected as (52),
and let the change in the Lyapunov function be obtained with
(53). Then, the error difference can be represented by

(63)

.
o1 (N) |4 1 (64)
oWy

z5(N +1)=22(N)+A22(N)=22(N)+[ ik

where Az,5(N) is the output error change and AW‘lk
I

represents the change in weight. Then (64), by using (46),
(48), and (63), can be represented as

02,(N) 02,(N) JE; Y B,

Z
= Q,(N)
ow, 7B ayi owl, 23(N)

(65)

(N +1) Zz(N){Za(LZ)Qz(N)} 7284220,(0)
Therefore,
(N +1)= z2<N>[1—y2(Baz2/zz<N))2o; <N>Q2<N)}

SZz(N)1—72(Ba22/Zz(N))ZQg(N)Qz(N% 67
By means of (53) and (64) to (67), A Ly(N) can be

rewritten as

ALy (N)=1ra[Bano] QT (NI (N)
{72 [Bazz /Zz(N)]zQzT (N)Qz(N)—2}

< LlBaza [0 (68)
{7/2 [Bazz /ZZ(N)]Z(szaX (N ))2 _2}

If y, is chosen as (0<y, <2/{(Q2max)2[Bazz/ZZ(N)]Z},
then the Lyapunov stability of L4(N)>0 and AL4(N)<0

is guaranteed such that the output tracking error converges to
zero as t — 0. At this point, the proof of the theorem is
complete. Moreover, the optimal learning rate, which
achieves rapid convergence, corresponds to [16], [17]

272{(Qamax )’ [Baza /2 (N)P} -2=0  (69)
ie.,

72 =1/{(Qamax)*[Baa /22 (NI} = 1/{(Qamax)* (B2)*} (70)
which comes from the derivative of (68) with respect to y,
and equals zero. This result shows that the optimal learning
rate can be tuned on-line instantly.

In summary, the on-line tuning algorithm of the modified
recurrent Laguerre OPNN is based on the adaptation laws
(47) and (48) for the connective weight adjustment and
recurrent weight adjustment with two optimal learning rates
in (50) and (62), respectively. Moreover, the modified
recurrent Legendre OPNN weight estimation errors are
fundamentally bounded [18]. As long as the modified
recurrent Laguerre OPNN weight estimation errors are
bounded, the control signal is bounded.

IV. EXPERIMENTAL RESULTS

Experimental results are provided to demonstrate the
control performance of the LSM drive system. A photo of the
experimental setup is shown in Fig. 4. A host PC downloads
the program running on DSP. The proposed controllers are
implemented with the DSP system. The
current-controlled PWM VSI is implemented with the IGBT
power modules with a switching frequency of 15 kHz. A DSP

control

control board includes multi-channels of D/A and encoder
interface circuits. The field-oriented mechanism drive system
is implemented with the FPGA control system, and the
control law is implemented with the DSP control system.

The parameters of the backstepping control system are

k] =2.2 5 k2 =1.7 N and k3 =23
heuristic knowledge [20-22] resulting from the periodic step

through some

command from 0 mm to 84 mm at the nominal case for
position tracking. In this way, good transient and steady-state
control performance is achieved. The parameters of the
backstepping control system using adaptive modified
recurrent Laguerre OPNNUO are k; =2.2 ,ky =17,

ky =2.3,and §=0.5according to heuristic knowledge [4-5]

resulting from the periodic step command from 0 mm to 84
mm at the nominal case for position tracking. In this way,
good transient and steady-state control performance is
achieved. First, a second-order transfer function in the
following form with a rise time of 0.1 s is chosen as the
reference model [19] by using the reduction of order method

for the periodical step command:

d,(s) _ 1156 (71)
()¢ (510 s +68s+1156

The control objective is to control the mover such that it
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Fig. 4. Photo of the experimental setup.
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Fig. 5. Experimental results of the backstepping control system
attributed to the periodic step command from 0 mm to 84 mm in
the nominal case. (a) Position response of the mover. (b)
Response of control effort.
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Fig. 6. Experimental results of the backstepping control system
attributed to the periodic step command from 0 mm to 84 mm in
the parameter disturbance case. (a) Position response of the
mover. (b) Response of control effort.

Fig. 7. Experimental results of the backstepping control system
attributed to periodic sinusoidal command from —84 mm to 84
mm at the nominal case. (a) Position response of the mover. (b)
Response of control effort.

40 mm S4mm

b)
Fig. 8. Experimental results of backstepping control system
attributed to the periodic sinusoidal command from —84 mm to
84 mm in the parameter disturbance case. (a) Position response
of the mover. (b) Response of control effort.

moves 84 mm periodically. Then, when the command is a
sinusoidal reference trajectory, the reference model is set as a
unit gain. The sampling interval of the control processing in
the experiment is set at 1 ms. To show the effectiveness of
the control system with a small number of neurons, the
modified recurrent Laguerre OPNN is equipped with two,
four, and one neuron(s) in the input layer, hidden layer, and
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Fig. 9. Experimental results of the proposed backstepping control
system using adaptive modified recurrent Laguerre OPNNUO
attributed to the periodic step command from 0 mm to 84 mm in
the nominal case. (a) Position response of the mover. (b)
Response of control effort.

Fig. 10. Experimental results of the proposed backstepping
control system using adaptive modified recurrent Laguerre
OPNNUO attributed to the periodic step command from 0 mm to
84 mm in the parameter disturbance case. (a) Position response
of the mover. (b) Response of control effort.

output layer, respectively. The parameter adjustment process
remains active for the duration of the experiment.

Some experimental results are provided to demonstrate the
control performance of the proposed control system. Two test
conditions are provided in the experiment: the nominal case

Fig. 11. Experimental results of the proposed backstepping
control system using adaptive modified recurrent Laguerre
OPNNUO attributed to the periodic sinusoidal command from
—84 mm to 84 mm in the nominal case. (a) Position response of
the mover. (b) Response of control effort.
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Fig. 12. Experimental results of the proposed backstepping

control system using adaptive modified recurrent Laguerre

OPNNUO attributed to the periodic sinusoidal command from

—84 mm to 84 mm in the parameter disturbance case. (a) Position
response of the mover. (b) Response of control effort.

and parameter variation case. The parameter variation case
involves the addition of one 8.1 kg iron disk to the mass of
the mover, i.e., the total mass is three times the nominal mass.
The experimental results of the backstepping control system
attributed to the periodic step command from 0 mm to 84 mm



A Backstepping Control of ... 607

TABLE1
CONTROL PERFORMANCE COMPARISON OF CONTROL SYSTEMS

Control System
and Four Test

Backstepping Control System

Performance mm in the nominal case mm in the
disturbance case

Cases caused by periodic step|caused by periodic step|caused by periodic sinusoidal|caused by periodic sinusoidal
command from 0 mm to 84 |command from 0 mm to 84|command from —84 mm to 84|command from —84 mm to 84

parameter|mm in the nominal case mm in the parameter
disturbance case

Maximum error of 7 0.2 mm 1 mm

0.1 mm 0.3 mm

RMS error of 7 0.05 mm 0.25 mm 0.05 mm 0.15 mm

Control System
and Four Test

Backstepping Control System Using Adaptive Modified Recurrent Laguerre OPNNUO

Cases caused by periodic step|caused by periodic step|caused by periodic sinusoidal|caused by periodic sinusoidal
command from 0 mm to 84 |command from 0 mm to 84|command from —84 mm to 84|command from —84 mm to 84
Performance mm in the nominal case mm in the parameter|mm in the nominal case mm in the parameter
disturbance case disturbance case
Maximum error of 7 0.2 mm 0.25 mm 0.1 mm 0.15 mm
RMS error of z; 0.05 mm 0.05 mm 0.05 mm 0.05 mm
TABLEII
CHARACTERISTIC PERFORMANCE COMPARISON OF CONTROL SYSTEMS
Control System |Backstepping Control System Backstepping Control System Using Adaptive
Characteristic Performance Modified Recurrent Laguerre OPNNUO
Dynamic response Fast Fast
Rejection of parameter disturbance Good Best
Convergence speed Slow (tracking error response at 1 mm| Fast (tracking error response at 1 mm within
within 0.5 s) 0.05s) (varying learning Rate)
Load regulation capability Good Best
Learning rate None Varies (optimal learning rate)
Control effort Large Small
Chattering Large Small

in the nominal case and parameter variation case are shown in
Figs. 5 and 6, respectively.

The position responses of the mover under the nominal
case and parameter variation case are shown in Figs. 5(a) and
6(a), respectively, and the associated control efforts are
shown in Figs. 5(b) and 6(b), respectively. The experimental
results of the backstepping control system attributed to the
periodic sinusoidal command from —84 mm to 84 mm in the
nominal case and parameter variation case are shown in Figs.
7 and 8, respectively. The position responses of the mover
under the nominal case and parameter variation case are
shown in Figs. 7(a) and 8(a), respectively, and the associated
control efforts are shown in Figs. 7(b), and 8(b), respectively.
Although favorable tracking responses can be obtained by the
backstepping control system, the chattering in the control
efforts is critical because of the large control gain.

The experimental results of the proposed backstepping
control system using adaptive modified recurrent Laguerre
OPNNUO attributed to the periodic step command from 0
mm to 84 mm in the nominal case and parameter variation
case are shown in Figs. 9 and 10, respectively.

The position responses of the mover in the nominal case
and parameter variation case are shown in Figs. 9(a) and
10(a), respectively, and the associated control efforts are
shown in Figs. 9(b) and 10(b), respectively. The experimental
results of the proposed backstepping control system using

adaptive modified recurrent Laguerre OPNNUO attributed to
the periodic sinusoidal command from —84 mm to 84 mm in
the nominal case and parameter variation case are shown in
Figs. 11 and 12, respectively. The position responses of the
mover in the nominal case and parameter variation case are
shown in Figs. 11(a) and 12(a), respectively, and the
associated control efforts are shown in Figs. 11(b) and 12(b),
respectively.

However, the robust control performance of the proposed
backstepping control system using adaptive modified
recurrent Laguerre OPNNUO under the occurrence of
parameter variation at different trajectories is obvious owing
to the on-line adaptive adjustment of the modified recurrent
Laguerre OPNN. As indicated by the experimental results,
the control performance of the proposed backstepping control
system using adaptive modified recurrent Laguerre OPNNUO
is better than that of the backstepping control system for the
tracking of periodic steps and sinusoidal commands.

The comparison of the control performances of the
backstepping control system and the proposed backstepping
control system using adaptive modified recurrent Laguerre
OPNNUO with two optimal learning rates is summarized in
Table I with respect to the experimental results of four test
cases. As shown in the table, the proposed backstepping
control system using adaptive modified recurrent Laguerre
OPNNUO results in smaller tracking errors in comparison
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with the backstepping control system. According to the
tabulated measurements, the proposed backstepping control
system using adaptive modified recurrent Laguerre OPNNUO
indeed yields superior control performance. The comparison
of the characteristic performances of the backstepping control
system and the proposed backstepping control system using
adaptive  modified Laguerre OPNNUO s
summarized in Table II with respect to the experimental
results. As shown in the table, the various performances of
the proposed backstepping control system using adaptive
modified recurrent Laguerre OPNNUO are superior to those
of the backstepping control system.

recurrent

V. CONCLUSION

A backstepping control system using adaptive modified
recurrent Laguerre OPNNUO is proposed to control LSM
drives for the tracking of periodic reference inputs. First, a
field-oriented mechanism is applied to formulate the dynamic
equation of the LSM servo drive. Then, the proposed
backstepping control system using adaptive modified
recurrent Laguerre OPNNUO is developed to control the
LSM drive with parameter variations. With the backstepping
control system, the mover position of the LSM drive achieves
good transient control performance and robustness to

uncertainties for the tracking of periodic reference trajectories.

In increasing the robustness of the LSM drive, an adaptive
modified recurrent Laguerre OPNNUO is proposed to
estimate the required lumped uncertainty. The on-line
parameter training methodology of the modified recurrent
Laguerre OPNN is based on the Lyapunov stability theorem.
Two optimal learning rates of the modified recurrent
Laguerre OPNN are derived to accelerate parameter
convergence. The effectiveness of the proposed control
scheme is verified by experimental results.
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