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Abstract 

 
The harmonic components of grid voltage result in oscillations of the calculated phase obtained via phase synchronization. This 

affects the security and stability of grid-connected converters. Moving average filter, delayed signal cancellation and their related 
harmonic elimination algorithms are major methods for such issues. However, all of the existing methods have their limitations in 
dealing with multiple harmonics issues. Furthermore, few studies have focused on a comparison and evaluation of these algorithms 
to achieve optimal algorithm selections in specific applications. In this paper, these algorithms are quantitatively analyzed based on 
the derived mathematical models. Moreover, an enhanced moving average filter and enhanced delayed signal cancellation 
algorithms, which are applicable for eliminating a group of selective harmonics with only one calculation block, are proposed. On 
this basis, both a comprehensive comparison and a quantitative evaluation of all of the aforementioned algorithms are made from 
several aspects, including response speed, required data storage size, sensitivity to sampling frequency, and elimination of random 
noise and harmonics. With the conclusions derived in this paper, better overall performance in terms of harmonic elimination can be 
achieved. In addition, experimental results under different conditions demonstrate the validity of this study. 
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I. INTRODUCTION 
The extensive utilization of non-linear power equipment has 

led to severe harmonic pollution in power grids [1]-[3]. When a 
utility signal is seriously distorted by harmonics, it is virtually 
impossible for phase synchronization control to acquire the 
accurate synchronous phase of a power grid. Therefore, the 
security and stability of grid-connected converters cannot be 
ensured [2]-[4]. Consequently, performing accurate phase 
synchronization under distorted grid conditions has become a 
major concern in both industrial applications and in the 
research field [5]-[8].  

Phase synchronization is mainly achieved in the rotational 
d-q frame [9]-[18]. The three phase utility signal in the 

stationary a-b-c frame is converted to a DC component in the 
d-q frame. After this, a proportional-integral (PI) regulator is 
utilized to eliminate the q-axis component through closed-loop 
feedback control. Thus, the synchronous phase is obtained. The 
above method, which employs a PI controller to eliminate the 
steady state error, fails to respond to utility signals with 
harmonic components. In this situation, oscillations are 
imposed on the q-axis DC component. In this case, the exact 
synchronous phase can be obtained by extracting and utilizing 
the DC part of the q-axis component as the input of a PI 
controller, which eliminates the effect of harmonics [10]-[13]. 
The most commonly used method of harmonic attenuation is 
adding a low-pass filter (LPF) in the control loop [9]-[14]. 
However, two contradictory factors, i.e. the harmonic 
attenuation ability and the dynamic response speed, have to be 
taken into account in the design of the LPF parameters [10], 
especially when dealing with a utility signal with a high 
content of low-order harmonics. However, in practice, it is 
difficult to find a compromise. In addition, the effect of a LPF 
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on harmonic attenuation is somewhat limited. 

Complete harmonic elimination can be achieved if the 
periodical and centro-symmetric properties of a harmonic 
signal are utilized. The main methods for doing this are 
Moving Average Filter (MAF) [15], Delayed Signal 
Cancellation (DSC) [16-17] and MAF/DSC based algorithms 
such as Cascaded DSC (CDSC) and Cascaded MAF (CMAF) 
[18]-[21]. The use of MAF is beneficial for filtering out high 
frequency random noise, especially when the noise is 
periodical [15]. An arbitrary harmonic, which can be regarded 
as a periodic noise signal at a certain frequency, can be 
eliminated completely by MAF with a properly designed 
window length. The DSC method with a time delay of a 
quarter grid cycle is proposed in [16] to eliminate the effects of 
the 2nd harmonic in the d-q frame. This improves the accuracy 
of synchronized phase in distorted utilities. Cascaded DSC 
(CDSC) blocks with different time delays [17], which are able 
to eliminate several harmonics, are widely used in areas of 
harmonic detection [18], phase synchronization [19], [20] and 
power quality improvement [21]. 

MAF/DSC based algorithms are the typical methods to 
achieve thorough elimination of harmonics. However, the 
above methods have their own pros and cons in dealing with 
multiple harmonics issues. DSC based algorithms suffer from a 
discretization error. As a result, the high-order harmonics 
cannot be eliminated adequately [22]. The linear interpolation 
method proposed in [16], [17] can partially mitigate the 
discretization error at the cost of increased computational effort. 
The authors of [22] pointed out that DSC based algorithms 
provide higher design flexibility than MAF based algorithms. 
However, MAF based algorithms require minimum 
computational effort for implementation [23]. To eliminate a 
group of specific harmonics, the existing MAF/DSC based 
algorithms cannot achieve the shortest possible response time 
[16], [22]. This issue can be solved by the proposed Enhanced 
MAF (EMAF) and Enhanced DSC (EDSC) algorithms. They 
are applicable for eliminating such harmonics with only one 
calculation block, and they can achieve the shortest possible 
response time in most cases. 

After reviewing the literature, it is clear that a specific 
algorithm, which is always characterized by its own 
superiority/inferiority, should be properly chosen for a 
particular application to avoid unnecessary computational 
effort and to achieve the shortest possible response time in 
specific grid scenarios, particularly when the selective 
cancellation of some specific components is needed. However, 
few papers have presented a comprehensive performance 
comparison and quantitative evaluation of the existing 
MAF/DSC based harmonic elimination algorithms. Therefore, 
optimal algorithm selection and better overall performance of 
harmonic elimination is unavailable. Focusing on such issues, 
this paper presents a detailed analysis, comparison and 
evaluation of the existing MAF/DSC based algorithms in  

different indexes such as response time, data storage size, 
sensitivity to sampling frequency, and elimination of random 
noise and harmonics. 

 

II. PHASE SYNCHRONIZATION SCHEME AND THE 
EFFECTS OF GRID HARMONICS 

A. Phase Synchronization Scheme 

The ideal voltage signal of a three-phase power system can 
be expressed as: 
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where, Um, θ, and ω are the amplitude, initial phase, and 
frequency of the utility signal, respectively. 

In this paper, τ=2π/3. 
Consequently, the synchronous phase can be described as: 

tϕ ω θ= +                  (2) 
Similarly, the relationship between the estimated grid 

phase ϕ  and the estimated initial phase angle θ


, extracted 
by the phase synchronization schemes, can be depicted as: 

tϕ ω θ= +


                  (3) 
The Park transformation is given by: 
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By substituting (1) into (4), the utility signal in d-q frame 
yields: 
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θ θ=


 when the steady state is achieved. A diagram of 
the closed-loop phase synchronization scheme in the d-q 
frame [8] is obtained, and shown in Fig. 1. 

When it is assumed that 0θ =


, (5) can be rewritten as: 
cos
sin

d m

q m

U U
U U

θ
θ

=
 =

              (6) 

Substituting (6) into (2), the grid phase can be calculated by: 

( )arctan q d ext U Uϕ ω θ= + +           (7) 

where: 
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Fig. 1. Diagram of closed-loop phase synchronization scheme. 
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Therefore, the open-loop phase synchronization scheme in 
the d-q frame [24], [25] is obtained, as shown in Fig. 2. This 
is characterized by a simple structure, easy implementation, 
strong adaptability and the shortest response time [24], [25]. 
Therefore, the open-loop phase synchronization scheme is 
selected to verify the validity of this study. 

B. Effect of harmonics on phase synchronization 

When harmonic distortion is present, the three-phase grid 
voltage signal can be expressed as: 

( )

( ) ( ) ( )

( ) ( ) ( )

2

2

2

sin( ) sin( )

sin sin

sin sin

a m mn n
n

b m mn n
n

c m mn n
n

u t U t U n t

u t U t U n t

u t U t U n t

ω θ ω ϕ

ω τ θ ω τ ϕ

ω τ θ ω τ ϕ

∞

=
∞

=
∞

=


= + + +


 = − + + − +


 = + + + + +


∑

∑

∑







 (8) 

where, n is the harmonic order, and Umn and φn are the 
amplitude and initial phase angle of the nth harmonic, 
respectively. 

By substituting (8) into (4), the distorted signal yields: 
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According to (9), harmonic components, with 1 order 
lower than those in the a-b-c frame, exist in the d-q frame 
when the utility signal is distorted. When the 2nd harmonic is 
present in the grid voltage, a fundamental harmonic is 
imposed on the DC components in the d-q frame [10]. If the 
q-axis component is still controlled to zero through a 
feedback loop, oscillations occur in the output of the phase 
synchronization, leading to phase errors. Moreover, the phase 
errors will be notable when dealing with distorted signals 
with a high content of low-order harmonics. 

The effect of harmonics can be completely eliminated by 
obtaining the DC part of the q-axis component and using this 
signal as the input of the PI regulator. MAF/DSC based 
algorithms are commonly used ways to achieve this. In the 
following sections, a detailed analysis, comparison and 
evaluation of all of the existing MAF/DSC based algorithms 
are performed and the corresponding conclusions can help 
designers select the optimal algorithm and achieve better 
overall performance in terms of harmonics elimination for 
specific applications. 

It should be noted that the nth harmonic in the next parts 
refers to the harmonic in the d-q frame where the harmonic 

elimination algorithm is performed. This component 
corresponds to the (n+1)th harmonic in the a-b-c frame. 

 

III. QUANTITATIVE ANALYSIS OF MAF BASED 
HARMONIC ELIMINATION ALGORITHMS 

A. Conventional MAF Based Algorithms 

MAF is extremely effective in eliminating periodic noise. 
It is obvious that the harmonic can also be eliminated by 
MAF if it is regarded as a periodic noise signal [15]. For the 
convenience of depiction, MAFn is used to denote the MAF 
for eliminating the nth harmonic. 

A mathematical model of the MAFn can be expressed as: 
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where, Tn is the period of the nth harmonic (which is also 
selected as the period of the average window).  

Assume the sampling time Ts of the system yields Ts≪Tn. 
Accordingly, (10) can be discretized as: 

( ) ( ) ( )
1

1 0
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where, the window length Ln can be expressed as the ratio 
between Tn and Ts (rounded to the nearest integer), i.e.: 

[ ]n n sL round T T=              (12) 
The results in (11) can be explained by the wave shape of 

the harmonic. The summation of all of the samples in one 
harmonic cycle is zero, since the harmonic is 
centro-symmetrical in a period, and the positive and negative 
samples tend to cancel each other out, leading to remarkable 
performance of the MAF in eliminating harmonics [15]. 

For the nth harmonic, the response time of the MAFn is one 
harmonic period Tn, as shown in Fig. 3. The harmonic is 
attenuated sufficiently during the dynamic process, and will 
be eliminated completely in the steady state. 

 
Fig. 2. Diagram of open-loop phase synchronization scheme. 

 
(a) 

 
(b) 

Fig. 3. Effect of MAF on eliminating a given harmonic in the (a) 
continuous-time domain. (b) discrete-time domain.  
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The Cascaded MAF (CMAF) can be utilized if several 
harmonic components need to be eliminated. The total 
response time of CMAF TCMAF is the summation of all the 
MAFs in the cascade. If harmonic components with orders not 
greater than N are to be eliminated, the response time yields: 

CMAF
1

N
n

n
T T

=
= ∑               (13) 

It can be readily seen that TCMAF becomes longer with 
increased harmonic components. In extreme cases, TCMAF tends 
to infinity when N keeps increasing. Such long time delays and 
huge data sizes are unacceptable in practice. 

B. Proposed EMAF Algorithms 

If the window length of the MAFn is extended to ZnLn (Zn 
= 1, 2, 3⋯), (11) can be rewritten as: 
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According to (14), the nth harmonic can be eliminated if the 
window length of the MAFn is an integer multiple of the 
number of samples per period. Accordingly, the response 
time is extended to ZnLn. By properly choosing the window 
length, one single MAF block can be designed to 
simultaneously eliminate a group of given harmonics. This 
MAF is defined as an Enhanced MAF (EMAF) in this paper.  

The window length of the EMAF, according to (14) and its 
conclusions, yields: 

EMAF: = n nn Z L Z L+∀ ∈          (15) 
where n is the order of harmonic to be eliminated and Z+ is a 
set of positive integers. 

The corresponding relation in the time domain is given by: 

EMAF: = n nn Z T Z T+∀ ∈          (16) 
where TEMAF is the dynamic response time of the EMAF. 

Obviously, LEMAF and TEMAF are the common multiples of 
the window lengths and response time of the corresponding 
MAF blocks, respectively. In particular, the lowest common 
multiples are chosen to improve the response speed. 

Fig. 4 demonstrates the aforementioned requirements of the 
EMAF by eliminating 5 kinds of harmonics. For Harmonic 1, 8 
harmonic periods are covered by the moving length TEMAF. 
Therefore, it can be filtered out by the EMAF. Similarly, the 
moving length TEMAF of the MAF covers 3 periods of 
Harmonic 3 and one period of Harmonic 5. As a result, they 
can be completely filtered out by the EMAF. However, 
complete cancellation within TEMAF cannot be realized for 
Harmonic 2 or Harmonic 4, as shown in the blank areas 
directed by the red arrows in Fig. 4. Therefore, they cannot be 

filtered out thoroughly. 
Moreover, following rules hold by summarizing the different 

response time with respect to harmonics: 
1) To eliminate all of the even harmonics, TEMAF is T/2; 
2) To eliminate all of the odd harmonics, TEMAF is T; 
3) To thoroughly eliminate all of the even and odd 

harmonics simultaneously, TEMAF is T. 
In order to illustrate how the EMAF is operated in the d-q 

frame, (9) is discretized as: 
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Performing the EMAF algorithm on both sides of (17) 
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LEMAF in (18) can be calculated by: 
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By employing the conclusions of (14) and (15), (18) can be 
simplified as: 
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Fig. 4. Effect of EMAF in filtering out a specific harmonic. 
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It should be noted that the response times of the EMAF 
and CMAF are usually different for a given combination of 
harmonics, leading to different algorithm choices. 

Some examples are: 
1) To eliminate the 5th and 7th harmonics, the minimum 

TEMAF is T, while TCMAF is 12T/35. Therefore, the CMAF is 
better; 

2) To eliminate the 2nd, 4th, and 6th harmonics thoroughly, 
the minimum TEMAF is T/2, while TCMAF is 11T/12. Therefore, 
the EMAF should be chosen; 

3) To eliminate the 3rd, 6th, 9th, and 12th harmonics 
thoroughly, the minimum TEMAF is T/3, while TCMAF is 
25T/36. Therefore, the EMAF is better and. 

Generally, the higher the content of low-order harmonics, 
the more advantage the EMAF has in terms of response speed, 
and vice versa.  

The EMAF algorithm is applicable for eliminating multiple 
specific harmonics with only one calculation block and can 
achieve the shortest possible response time in most cases. 

 
IV. QUANTITATIVE ANALYSIS OF DSC BASED 

HARMONIC ELIMINATION ALGORITHMS 
A. Conventional DSC Based Algorithms 

DSC is another typical harmonic elimination method that is 
only effective for periodical signals with centro-symmetry. 
The harmonics in a utility signal are typical periodical signals 
with centro-symmetry. This property is utilized in the design 
of the DSC blocks when harmonics are to be eliminated [16]. 

Similarly, the DSCn is utilized to designate the DSC block 
for eliminating the nth harmonic. The DSCn can be expressed 
in both the continuous and discrete-time domains as [17]: 
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where the relationship between Tn and Ln yields (12). 
Obviously, the response time of the DSCn is Tn/2 (in the 

discrete time domain the delay length is Ln/2), as shown in 
Fig. 5. The harmonic is sufficiently attenuated during the 
transient, and is almost totally cancelled by the DSCn in the 
steady state. 

Like the CMAF, the Cascaded DSC (CDSC) can be 
utilized if several harmonics are to be eliminated. In this case, 
the overall response time TCDSC is a summation of all of the 
cascaded DSC blocks. If all of the harmonics with orders not 
more than N are to be eliminated, TCDSC is only half of TCMAF. 
In addition, where there are more harmonics, the longer 
response times and larger data sizes are needed, which will 
become a bottleneck for practical use. 

B. Proposed EDSC Algorithms 

If the delay length of the DSCn is increased by (Zn−1)Ln, 
(24) can be rewritten as: 

( ) ( )

( )

1 +
2 2

1 + 0
2 2

n
n n n n n

n
n n

Lh k h k h k Z L

Lh k h k

  = + −  
  

  = − =  
  

       (25) 

where k≫(2Zn−1)Ln/2. 
According to (25), the nth harmonic can be eliminated 

when the delay length of the DSCn block is (2Zn−1)Ln/2. 
Consequently, the response time of the DSCn is extended to 
(2Zn−1)Tn/2. 

By properly designing the delay length, several harmonics 
can be eliminated simultaneously using a single DSC block. 
This is defined as Enhanced DSC (EDSC).  

According to the conclusions of (25), the delay length of 
the EDSC LEDSC and the response time TEDSC can be 
calculated as: 

( )EDSC: 2 = 2 1+∀ ∈ −n nn Z L Z L          (26) 

( )EDSC: 2 = 2 1+∀ ∈ −n nn Z T Z T           (27) 
Obviously, 2LEDSC and 2TEDSC are common multiples of 

the delay lengths and response times of the DSCn blocks, 
respectively. Moreover, the ratio of 2LEDSC to Ln, i.e. (2Zn−1), 
is an odd number for each n, as is the ratio between 2TEDSC 
and Tn. To improve the response speed, 2LEDSC should be 
chosen as the minimum common multiple.  

If no 2LEDSC can agree with (26) for a group of given 
harmonics, these harmonics must be divided into several 
sub-groups, and each sub-group must have a 2LEDSC that 
agrees with (26). Every sub-group share an EDSC block and 
all of the EDSC blocks in cascade, which can eliminate the 
above group of harmonics. Some examples are: 

1) To eliminate the 3rd and 5th harmonics thoroughly, TEDSC 
is chosen as half a grid cycle T/2, and the corresponding 

 
(a) 

 
(b) 

Fig. 5. Effect of DSC on eliminating a given harmonic in the (a) 
continuous-time domain. (b) discrete-time domain.  
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ratios are 3 and 5 which are both odd numbers. The dynamic 
response time of the EDSC is T/2 in this case. 

2) To eliminate the 2nd, 4th, 6th, 10th, 12th, and 20th 
harmonics thoroughly, they must be divided into two 
sub-groups, and two EDSC blocks in cascade are utilized: 
one with a delay T/4 for eliminating the 2nd, 6th, and 10th 
harmonics, and the other with a delay T/8 for eliminating 
other harmonic components. The corresponding ratios are 1, 
3, and 5 for both of the EDSC blocks. The total response time 
is the sum of the two blocks, i.e. 3T/8. 

For the EDSC, it holds that [21]: 1) by delaying T/2, all of 
the odd harmonics can be eliminated simultaneously; and 2) 
by delaying T/2(k+1) (k=1, 2, 3 ⋯), all of the even harmonics 
with the order n=i×2k (i=1, 3, 5⋯) can be eliminated 
simultaneously. 

Consequently, the total response time of the EDSC TEDSC, 
considering the elimination of all the arbitrary harmonics, is: 

EDSC 1
12 2

∞

+
=

= + =∑ k
k

T TT T          (28) 

It is evident from (28) that the arbitrary orders of the 
harmonics can be eliminated by delaying a grid cycle T with 
the EDSC blocks.  

Generally, odd harmonics are most common in power grids. 
In the a-b-c frame, by delaying T/4, all of the odd harmonics 
with the order n=2i +1 (i=1, 3, 5 ⋯) can be eliminated, i.e. 
the 3rd, 7th, 11th, 15th, and 19th harmonics and so on. Similarly, 
by delaying T/8, the odd harmonics with the order n=4i+1 are 
eliminated, i.e. the 5th, 13th, and 21st components and so on. 
By delaying T/16, the odd harmonics with the order n=8i+1 
can be eliminated, i.e. 9th and 25th, etc. Therefore, an effective 
harmonic suppression strategy, i.e. cascading the 
aforementioned EDSC blocks and using an extra LPF, is 
obtained. With a delay of 7T/16 (which is less than half a grid 
cycle), all of the odd harmonics with an order of not more 
than 15 are eliminated by the above EDSC blocks. The 
higher-order harmonics can be sufficiently suppressed by the 
application of a LPF. 

In practice, selection between the EDSC and the CDSC 
depends on the harmonics to be eliminated.  

Some examples are: 
1) To eliminate the 3rd and 5th harmonics thoroughly, the 

response times for the EDSC and CDSC are T/2 and 4T/15, 
respectively. Hence, the CDSC should be chosen. 

2) To eliminate the 1st, 3rd, and 5th harmonics thoroughly, 
the response times for the EDSC and CDSC are T/2 and 
23T/30, respectively. Hence, the EDSC is better. 

3) To eliminate the 2nd, 4th, 6th, 10th, and 12th harmonics 
thoroughly, the response times for the EDSC and CDSC are 
3T/8 and 11T/20, respectively. Hence, the EDSC should be 
chosen. 

Generally, the EDSC scheme is better for processing 
distorted signals with a high content of low-order harmonics, 
and vice versa. 

 

V. COMPARISON AND EVALUATION OF MAF/DSC 
BASED ALGORITHMS 

 

The five aspects of dynamic response time, required data 
storage size, attenuation rate of the harmonic amplitude, 
sensitivity to sampling frequency, ability of harmonic and 
noise elimination, are considered in the comprehensive 
comparisons and quantitative evaluations of the MAF/DSC 
based harmonic elimination algorithms, i.e. CMAF, CDSC, 
EMAF, and EDSC. 

A. Dynamic Response Time and Data Storage Size 

It can be readily seen from (12) that the required data 
storage size L is proportional to the transient time. Hence, the 
analysis results of the response time also apply to the data 
storage size. 

To evaluate the response time, an application scenario is 
assumed where the orders of the harmonics to be eliminated 
are not bigger than 30. Fig. 6 demonstrates the results of the 
dynamic response time using the different algorithms. The 
horizontal axis represents the orders of the harmonics which 
are to be eliminated, and the vertical axis is the ratio of the 
response time to the grid cycle. Fig. 6 (a), (b), and (c) refer to 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Response times in eliminating. (a) all harmonics. (b) all 
odd harmonics. (c) all even harmonics.  
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the cases of eliminating all of the harmonics, all of the odd 
harmonics, and all of the even harmonics, respectively. 

By evaluating the response times in various scenarios, 
following conclusions can be obtained: 

1) TMAF is twice TDSC for eliminating a specific harmonic; 
2) TCMAF is twice TCDSC in all of the cases; 
3) The response speed of the EDSC is quicker than that of 

the EMAF, especially with few low-order harmonics. When 
the number of harmonics to be eliminated increases, the 
response speeds of the EMAF and EDSC tend to be closer. 
When all of the odd harmonics are to be eliminated, the 
response speed of the EDSC is twice that of the EMAF; 

4) To eliminate all of the harmonics or all of the even 
harmonics, the response speed of the EDSC is slightly faster 
than that of the EMAF. The EMAF is easier in terms of 
implementation. However, the EDSC blocks can be utilized 
in cascade; 

5) To eliminate all of the odd harmonics, the response 
speed of the EDSC is dominant over the EMAF. Therefore, 
the EDSC is better; 

6) The response speeds of the EMAF and EDSC are 
quicker than those of the CMAF and CDSC, in general; 

7) To eliminate all of the harmonics, the limit of the 
transient time for the filtering algorithm is a grid cycle T. 

Based on the above conclusions, the response times of the 
open-loop and closed-loop phase synchronization schemes 
have the following rules: 

1) The dynamic of open-loop phase synchronization only 
consists of harmonic elimination and noise suppression. The 
response time of the LPF for filtering out high frequency 
noise is usually short. Hence, the response time of the 
harmonic elimination is dominant in the overall transient time 
of open-loop phase synchronization. 

2) However, the transient of closed-loop phase 
synchronization mainly depends on the closed-loop regulator, 
which in turn interferes with the dynamic behaviors of the 
harmonic and noise elimination. This results in complexity in 
estimating the total transient time. Experimental results 
indicate that the EMAF and EDSC have proximate transient 
times, which depend mainly on the closed-loop regulator. 

Considering that the EMAF is easier to realize, and that the 
output phase is more stable owing to a smaller oscillation 
amplitude compared with the EDSC, it is more suitable to 
utilize the EMAF in closed-loop phase synchronization. 

B. Attenuation Rate of Harmonic Amplitude 

Based on (8), the nth harmonic can be expressed as: 
( ) sin( )n mn nh t U n tω ϕ= +          (29) 

To evaluate the harmonic amplitude attenuation rate in the 
transient and steady state, both the DSC and MAF are 
studied. 

Case 1: DSC based algorithms 

During the transient, t < Tn /2 and k < Ln/2. Therefore, 
hn(k- Ln/2)=0 and: 

( ) ( ) ( )1 1
2 2 2

n
n n n n

Lh k h k +h k h k  = − =  
  

     (30) 

The mth (m ≠ n) harmonics, which cannot be eliminated 
by the DSC based algorithms, also satisfy (30). Hence, for all 
of the harmonics processed by the DSC based algorithms, the 
amplitudes can be reduced by 50% during the transients. 

In the steady state, t > Tn /2 and k > Ln/2. Therefore, for 

the nth harmonics, hn(t)=0. For the mth (m ≠ n) harmonics, it 
holds that: 

( ) ( )

DSC

sin +sin
2 2

2 1 cos sin( )
2

ω ϕ ω ϕ

π ω ϕ ϕ

   = + − +   
   

 = + + + 
 

mm n
m m m

mm m

U Th t m t m t

m U m t
n

 (31) 

where: 

( )
( )DSC

sin
arctan

1+cos
π

ϕ
π

 
= −  

  

m n
m n

 

Moreover, it holds that: 
2

n
TT
n n

π
ω

= =                (32) 

Let Umm be the base value. Then the per-unit amplitude 
value of the mth harmonics in the steady state can be obtained 
as: 

( )DSC
2, 1 cos

2
mf m n
n
π = +  

 
      (33) 

To evaluate the harmonic amplitude attenuation rate of the 
DSC algorithm in the steady state, an application scenario is 
assumed where the orders of the harmonics to be eliminated 
are not bigger than 30. Fig. 7 demonstrates the harmonic 
amplitude rate using the DSC algorithm. The horizontal axis 
m represents the orders of harmonics to be eliminated by the 
DSCn, and the vertical axis is the amplitude attenuation rate 
of the mth harmonic. 

From Fig. 7 and (33), it is evident that the harmonics with 
the order m= (2k+1)n (k=0, 1, 2 ⋯) can be attenuated to 0 in 
the steady state, and that the harmonics with the order m=2kn 
(k=0, 1, 2 ⋯) cannot be attenuated at all. It is also apparent 
that the harmonic with an order close to (2k+1)n will tend to 

 
Fig. 7. Harmonic amplitude with DSC in steady state. 
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be eliminated, while in another case the harmonic will be 
virtually unaffected with an order of approximately 2kn. 

Case 2: MAF based algorithms 
During the transient, it holds that t<Tn. Therefore, 

hn(t-Tn)=0 and: 

( ) ( )

( )

0sin

cos cos
2

ωτ ϕ τ

ω ϕ ϕ
π

= +

 = − + − 

∫
tmn

n n
n

mn
n n

Uh t n d
T
U n t

       (34) 

The mth (m ≠ n) harmonics, which cannot be eliminated 
by the DSC based algorithms, also satisfy hm(t-Tn)=0. Hence: 

( ) ( )

( )

0sin

cos cos
2

ω ϕ

ω ϕ ϕ
π

= +

 = − + − 

∫
tmm

n m
n

mm
m m

Uh t m t dt
T
nU m t

m

     (35) 

Fig. 8 demonstrates the harmonic amplitude during 
transients using the MAF algorithm. The DSC can only 
reduce the harmonic amplitude to 0.5 p.u. (see the purple 
line) while the MAF can make the harmonic amplitude lower 
than 0.159 p.u. (see the yellow line) in most cases. Obviously, 
the general harmonic amplitude attenuation rate of the MAF 
is much bigger than that of the DSC. This figure also shows 
that the larger n is, the better the performance the MAF 
algorithm becomes. 

In the steady state, t > Tn and k > Ln. Therefore, for the nth 
harmonics, hn(t)=0. For the mth (m ≠ n) harmonics, it holds 
that: 

( ) ( ){ }

( )MAF

cos cos[ ( ) ]
2
2 21 cos cos

2

ω ϕ ω ϕ
π

π ω ϕ ϕ
π

= − + − − +

 = − − + + 
 

mm
m m n m

mm m

Uh t m t m t T

m U m t
n

(36) 

where: 
( )
( )MAF

sin 2
arctan

1 cos 2
π

ϕ
π

 
=  

−  

m n
m n

 

Choose Umm as the base value. Then the per-unit amplitude 
value of the mth harmonic in the steady state can be obtained 
as: 

( )MAF
2 2, 1 cos

2
mf m n
n
π

π
 = −  
 

      (37) 

Fig. 9 demonstrates the harmonic amplitude with the MAF 
algorithm. It is evident that the harmonics with the order m= 

kn (k=0, 1, 2 ⋯) can be attenuated to 0 in the steady state, and 
that all of the other harmonics can be attenuated sufficiently. 
It is apparent that the harmonics with an order closer to kn 
tend to be eliminated more adequately. 

Case 3: Comparison of amplitude attenuation rate 
Fig. 7 illustrates a comparison of the amplitude attenuation 

rate in the transient state. The performance of the MAF based 
algorithms is far better than that of the DSC based algorithms 
under most conditions. 

To compare the amplitude attenuation rate in the steady 
state, the corresponding attenuation indicator F is first 
defined as: 

( )
( )

( )
( )

1 cos,
, 1 cos 2

π π

π

+
= =

−
DSC

MAF

m nf m n
F

f m n m n
      (38) 

Obviously, F>1 means that the MAF based algorithm is 
better than the DSC based algorithm in terms of steady-state 
performance, and vice versa. Fig. 10 demonstrates the 
attenuation indicator F, which is also a comparison of 
amplitude attenuation rate in the steady state. The numerical 
calculation result illustrates that F ≥1. Therefore, the ability 
of the MAF based algorithms to fully attenuate the harmonic 
amplitude is generally far stronger than that of the DSC based 
algorithms. From this perspective, the MAF based algorithms 
should be selected first. 

C. Sensitivity to Sampling Frequency 

Usually, the MAF is implemented by a digital controller in 
the discrete-time domain. A problem arises when the 
harmonic’s period Tn is not divisible by the sample period Ts. 
In practical applications, the sampling frequency fs is usually 
determined by other control requirements, such as the losses 
or the size of power-electronic converters. In this situation, 
the nearest sample point is usually used to approximate 

 
Fig. 8. Harmonic amplitude with MAF in transient. 

 
Fig. 9. Harmonic amplitude with MAF in steady state. 

 
Fig. 10. Attenuation indicator in steady state. 
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accurate values, as illustrated in (12) and Fig. 11. 
The sampling error caused by (12) can be expressed as: 

n s nL T T T= + ∆               (39) 
where, ∆T ∈ (-0.5Ts, 0.5Ts] is the time discretization error. 

Therefore, a discretization error between the continuous 
mode and the discrete mode is inevitable and thorough 
harmonic elimination cannot be achieved. To evaluate the 
sensitivity of the DSC/MAF based algorithms to sampling 
frequency this paper first derives the general expression of 
the detection error introduced by the non-ideal discrete time. 

Based on (8) and (29), the nth harmonic, which can be 
thoroughly eliminated in theory, is rewritten in phasor form 
as: 

( ) ( )sin( ) j n t
n mn n mn

nh t U n t U e ω ϕω ϕ += + ⇒     (40) 
Substitute (39) into (23), and it holds that: 

2 2sin
2

π πω ϕπ
∆ + − + 

 ∆ =  
 

n Tj n t
T

n mn
nn Th U e

T
     (41) 

Hence, the per-unit amplitude value of the nth harmonic 
eliminated by the DSC based algorithms in the steady state is 
given as: 

( )_ DSC , sin
2
π

∆
∆ ∆ =  

 
T

n Tf T n
T

       (42) 

Similarly, substitute (39) into (10), and it holds that: 
( )

( )
( )

( ) ( ) ( )1

1

sin 1
1

ω
ω ϕ

π

ω

π
π

− +∆
+

− + ∆

−
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+ ∆

=  + ∆  + ∆

jn T T
j n t

n mn
n

j n T Tmn

n
neh U e

jn T T
U n T T e
n T T

    (43) 

Hence, the per-unit amplitude value of the nth harmonic 
eliminated by the MAF based algorithms in the steady state is 
given as: 

( ) ( ) ( )_ MAF
1, sin 1

1
π

π∆ ∆ =  + ∆  + ∆Tf T n n T T
n T T

 (44) 

To evaluate the discretization error and sensitivity to the 
sampling frequency in the steady state, the maximum 
possible error (∆T=0.5Ts) is considered. The application 
scenario where the orders of the harmonics to be eliminated 

are not bigger than 30 is assumed. Fig. 12 and Fig. 13 
demonstrate the per-unit amplitude values of the nth 
harmonics, which are caused by the discretization error of the 
DSC/MAF based algorithms. The horizontal axis represents 
the sampling frequency, and the vertical axis is the per-unit 
amplitude value of the nth harmonics. 

Fig. 12 and Fig. 13 illustrate the comparison result of the 
amplitude error in the steady state. The larger the sampling 
frequency is and the lower the harmonic order, the smaller 
the amplitude error becomes. The performance of the MAF 
based algorithms is generally better than that of the DSC 
based algorithms under most conditions. 

To compare the sensitivity of the DSC/MAF based 
algorithms to the sampling frequency in the steady state, the 
corresponding sensitivity indicator K is first defined as: 

( )
( ) ( )

_

_

1 sin, 2
, sin 1

ππ

π
∆

∆

∆ ∆   +   ∆    = =
∆  + ∆  

T DSC

T MAF

n T n T
f T n T TK
f T n n T T

    (45) 

Obviously, K >1 means that the MAF based algorithm is 
better than the DSC based algorithm in the steady-state 
performance in terms of sensitivity to the sampling frequency, 
and vice versa. 

 
(a) 

 
(b) 

Fig. 11. Discretization time error between continuous mode and 
discrete mode. (a) Ceiling rounding. (b) Floor rounding.  

 
Fig. 12. Harmonic amplitude error with DSC in steady state. 
 

 
Fig. 13. Harmonic amplitude error with MAF in steady state. 
 

 
Fig. 14. Sensitivity indicator in steady state. 
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Fig. 14 demonstrates the sensitivity indicator K, which is 
also the comparison result of the sensitivity to the sampling 
frequency in the steady state. The numerical calculation result 
illustrates that K≥1. Therefore, the sensitivity of the MAF to 
the sampling frequency is generally far weaker than that of 
the DSC based algorithms. Therefore, the MAF based 
algorithms should be selected first to achieve thorough 
harmonic elimination. 

Fig. 15 gives an example which shows the sensitivity with 
respect to the harmonic order and sampling frequency. The 
harmonic orders are 3 and 7, and the sampling frequencies 
are 5 kHz and 2.5 kHz, respectively. The MAF is able to 
eliminate the harmonics completely in both cases, while 
results of the DSC contain a certain amount of errors, which 
will be larger with a higher order and a lower sampling 
frequency. 

D. Ability of Random Noise Suppression 

High-frequency random noise σ(i) agrees with: 

( )
1

lim 0
k

k i
iσ

→∞ =
=∑               (46) 

To evaluate the ability of the DSC/MAF based algorithms 
to eliminate random noise in the steady state, (11) and (24) 
are first rewritten as: 
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It is evident that the MAF based algorithms are able to 
average the random noise signal in the whole average 
window, effectively suppressing the high-frequency random 
noise. However, the DSC based algorithms have no effect on 
noise suppression (in some cases noise is amplified). Fig. 16 
demonstrates the simulation results of noise suppression with 
the two methods. The output signal of the MAF is almost 
zeroed, while severe noise distortion is present with the DSC 
algorithm. 

It is evident that compared with the MAF based algorithms, 
an extra LPF is necessary for eliminating random noise with 
the DSC based algorithms. 

 
VI. EXPERIMENTAL VERIFICATION 

 

Experiments are performed to verify the aforementioned 
analysis and the proposed algorithms. The sampling 
frequency is set to be 25 kHz. Since the response time of the 
CDSC is always half that of the CMAF in eliminating several 
harmonics, only the experimental results of the CDSC are 
given in this paper. The signal being sampled stays in the 
a-b-c frame. Hence, the harmonic order refers to that in the 
a-b-c frame. In addition, all of the experiments are performed 
using the open-loop phase synchronization scheme except for 
Experiment E, in which the closed-loop phase 
synchronization scheme is utilized. 

A. Elimination of a Given Harmonic 

The results are the same for the MAF, CMAF, and EMAF 
when eliminating a given harmonic, since the CMAF and 
EMAF degenerate to the MAF in this case. Similar results 
hold true for the DSC based algorithms. Fig. 17 shows the 
results of eliminating the 3rd harmonic with the MAF and 
DSC. The transient time is 10 ms and 5 ms, respectively. 
These results show good agreement with the theoretical 
analysis. The transient time of the DSC is only half that of the 

 
Fig. 17. Eliminating the 3rd harmonic via MAF and DSC. 
 

 
Fig. 16. Noise suppression with MAF/DSC. 

 
(a) 

 
(b) 

Fig. 15. Sensitivity to harmonic order and sampling frequency. 
(a) Low order and high fs. (b) High order and low fs.  
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MAF, while the oscillation amplitude is 2.5 times. This 
results in larger phase oscillations in this case.  

B. Elimination of Several Even Harmonics 

Fig. 18 gives the results of eliminating the 2nd and 4th 
harmonics with the CDSC, EMAF, and EDSC. The response 
times are 13.3 ms, 20 ms, and 10 ms, respectively. Fig. 19 
displays the results of simultaneously eliminating the 2nd, 4th, 
6th, and 8th harmonics, and the corresponding transient times 
are 16.8 ms, 20 ms, and 10 ms, respectively, as expected.  

The experimental results indicate that the response times 
for the EMAF and EDSC are 1 grid cycle and 0.5 cycles, 
respectively, in eliminating arbitrary numbers of odd 

harmonics. Phase oscillations are more obvious when the 
EDSC is utilized. The transient time of the CDSC increases 
with the number of harmonics to be eliminated. The response 
time of the EDSC is shorter than that of the CDSC. However, 
it has greater phase oscillations. 

To summarize, the dynamic response speed is almost same 
for the CDSC and EMAF, and is the fastest for the EDSC. 
The EMAF is the easiest to implement, and it has the lowest 
phase oscillations. 

C. Elimination of Several Odd Harmonics 

Fig. 20 illustrates the results of eliminating the 3rd, 5th, and 
7 th  harmonics with the CDSC, EMAF, and EDSC. The 

 
                  (a)                                  (b)                                 (c) 
Fig. 18. Elimination of the 2rd and 4th harmonics with (a) CDSC. (b) EMAF. (c) EDSC. 
 

 
(a)                                  (b)                                 (c) 

Fig. 19. Elimination of the 2nd, 4th, 6th and 8th harmonics with (a) CDSC. (b) EMAF. (c) EDSC. 
 

 
(a)                                  (b)                                 (c) 

Fig. 20. Elimination of the 3rd, 5th and 7th harmonics with (a) CDSC. (b) EMAF. (c) EDSC. 
 

 
(a)                                  (b)                                 (c) 

Fig. 21. Elimination of the 3rd, 5th, 7th and 9th harmonics with (a) CDSC. (b) EMAF. (c) EDSC. 
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response times are 9.2 ms, 10 ms, and 7.5 ms, respectively. 
Fig. 21 shows the results of eliminating the 3rd, 5th, 7th, and 

9th harmonics, and the response time is 10.4 ms, 10 ms and 
8.8 ms, respectively. This is also in agreement with the above 
analysis. It is evident from the results that only half a grid 
cycle is required for eliminating all of the odd harmonics with 
the EMAF. However, the transient times for the CDSC and 
EDSC increase with the number of odd harmonics to be 
cancelled. The transient of the EDSC is faster than the CDSC. 
However, it has larger phase oscillations. 

In summary, the CDSC, EMAF and EDSC are comparable 
in terms of dynamic response speed. Among them the EDSC 
is slightly faster. The EMAF is the easiest one to carry out 
with only slight oscillations. Hence it is the most suitable in 
this case. 

D. Elimination of Odd and Even Harmonics 

Fig. 22 gives the results for eliminating all of the 
harmonics within order 8. The transient times for the CDSC, 
EMAF, and EDSC are 26 ms, 20 ms, and 17.5 ms, 
respectively. In this case, only one EMAF block is needed, 
while several blocks of CDSC and EDSC are cascaded when 
utilizing the DSC based algorithms. It can be seen that the 
response time increases with the number of harmonics. The 
response speed of the EDSC is faster than the CDSC, yet the 
phase oscillation is more severe.  

In summary, the response speed is virtually same for the 
three algorithms. Among them the EDSC is slightly quicker, 
and the output phase of the EMAF and CDSC are less 
affected by harmonics. Considering that the EMAF is also the 
easiest one to realize, it should be the best solution in this 
case. 

E. Performance in Closed-Loop Phase Synchronization 

Fig. 23 shows the experimental results for eliminating all 
of the harmonics within order 4 with the CDSC, EMAF, and 
EDSC, utilizing the closed-loop phase synchronization 
scheme. These three algorithms have roughly the same 
response times, at about 30 ms. The results suggest that the 
transient time for the CDSC, EMAF, and EDSC are nearly 
the same in the closed-loop phase synchronization, while the 
amplitudes of the oscillations are different (see Fig. 24). The 
oscillation is the most severe in the output q-axis component 
signal Uq and the phase signal utilizing the EDSC, while the 
EMAF possesses the smoothest transient. 

Obviously, the dynamic response is in close relation to the 
applied closed-loop controller. Therefore, it is unlikely to 
give an empirical expression of the transient time based 
merely on the type of harmonic elimination scheme. In 
general, the EMAF is the most suitable due to the fact that it 
has the lightest effect from harmonics on the output phase. Its 
suitability is also due to its simplicity in terms of 
implementation. 

 

VII. CONCLUSION 
The MAF/DSC based harmonic elimination algorithms 

(CMAF, EMAF, CDSC, and EDSC) have different behaviors 
in terms of dynamic response speed, steady-state performance, 

 
(a)                                  (b)                                 (c) 

Fig. 22. Elimination of all harmonics within order 8 with (a) CDSC. (b) EMAF. (c) EDSC. 
 

 
(a)                                  (b)                                 (c) 

Fig. 23. Performances of CDSC, EMAF and EDSC under closed-loop control. (a) CDSC. (b) EMAF. (c) EDSC. 
 

 
Fig. 24. Uq of different schemes in closed-loop control. 
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required data storage size, sensitivity to sampling frequency 
and the ability to eliminating harmonics and noise. Therefore, 
designers should consider multiple factors simultaneously 
and select the optimal algorithm to avoid unnecessary 
computational effort and to achieve the shortest possible 
response time in a specific application, particularly in the 
case of the selective cancellation of specific harmonics.  

Generally, the DSC based algorithms have a quicker 
dynamic response speed and have more advantages in terms 
of design flexibility when dealing with several given 
harmonics, especially for several odd harmonics. However, 
the amplitude attenuation is not sufficient for harmonics that 
are not configured to be eliminated. Therefore, the phase 
oscillations during the transient are more severe for DSC 
based algorithms. In the steady state, they are more sensitive 
to the sampling frequency. In addition, an additional LPF is 
required to attenuate high-frequency random noise.  

The MAF based algorithms are characterized by sufficient 
attenuation of harmonics/noise and easy implementation. 
Their harmonic elimination ability is far stronger than that of 
the DSC based algorithms, especially for systems with a low 
sampling frequency and for eliminating high-order harmonics. 
If arbitrary harmonics need to be eliminated, the EMAF and 
EDSC have the same theoretical response time. However, the 
EMAF with a one grid cycle window length is much better in 
terms of digital implementation and comprehensive 
performance. The dynamic response speeds of the EMAF and 
EDSC are roughly same in closed-loop phase synchronization 
systems, while the EMAF is bounded to a smoother output 
phase and an easier implementation. The experimental results 
prove the correctness of the analysis.  

The conclusions of this study can be utilized for selecting 
the most suitable harmonic elimination algorithm and for 
achieving better overall performance. In addition, the 
improved schemes, EMAF and EDSC, can also be applied for 
detecting selective harmonics, phase-sequence separation, 
and power quality improvement. 
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