# 요소 중심의 네트워크 접근법을 이용한 부정정 트러스 구조 해석

• Han, Yicheol (Northeast Regional Center for Rural Development, Pennsylvania State University)
• Accepted : 2016.04.12
• Published : 2016.05.31

#### Abstract

Element-focused network analysis method for truss structure is proposed. The propagation process of loads from external loads to connected other elements is similar to that of connections between nodes in accordance with attachment rule in a network. Here nodes indicate elements in a truss structure and edges represent propagated loads. Therefore, the flows of loads in a truss structure can be calculated using the network analysis method, and consequently the structure can also be analyzed. As a first step to analyze a truss structure as a network, we propose a local load transfer rule in accordance with the topology of elements, and then analyze the loads of the truss elements. Application of this method reveal that the internal loads and reactions caused by external loads can be accurately estimated. Consequently, truss structures can be considered as networks and network analysis method can be applied to further complex truss structures.

#### References

1. Barabasi, A. -L., and R. Albert, 1999. Emergence of Scaling in Random Networks. Science 285: 509-512.
2. Borgatti, S. P., 2005. Centrality and network flow. Social Networks 27: 55-71. https://doi.org/10.1016/j.socnet.2004.11.008
3. Chu, D. N., Y. M. Xie, A. Hira, and G. P. Steven, 1996. Evolutionary structural optimization for problems with stiffness constraints. Finite Elements in Analysis and Design 21(4): 239-251. https://doi.org/10.1016/0168-874X(95)00043-S
4. Coleman, T. F., and A. Pothen, 1986. The null space problem I; complexity. SIAM Journal on Algebraic Discrete Methods 7(4): 527-537. https://doi.org/10.1137/0607059
5. Coleman, T. F., and A. Pothen, 1987. The null space problem II; algorithms. SIAM Journal on Algebraic Discrete Methods 8(4): 544-561. https://doi.org/10.1137/0608045
6. Denke, P. H., 1962. A general digital computer analysis of statically indeterminate structures. Technical Report. NASATN-D-1666.
7. Dodds, P. S., R. Muhamad, and D. J. Watts, 2003. An Experimental Study of Search in Global Social Networks. Science 301(5634): 827-829. https://doi.org/10.1126/science.1081058
8. Freeman, L. C., S. P. Borgatti, and D. R. White, 1991. Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks 13: 141-154. https://doi.org/10.1016/0378-8733(91)90017-N
9. Freeman, L. C., 1978. Centrality in social networks conceptual clarification. Social Networks 1: 215-223. https://doi.org/10.1016/0378-8733(78)90021-7
10. Fritsch, M., and M. Kauffeld-Monz, 2010. The impact of network structure on knowledge transfer: an application of social network analysis in the context of regional innovation networks. The Annals of Regional Science 44: 21-38. https://doi.org/10.1007/s00168-008-0245-8
11. Gilbert, J. R., and M. T. Heath, 1987. Computing a sparse basis for the nullspace. SIAM Journal on Algebraic Discrete Methods 8(3): 446-459. https://doi.org/10.1137/0608037
12. Goh, K. -I., M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L. Barabasi, 2007. The human disease network. Proceedings of the National Academy of Sciences of the United States of America 104(21): 8685-8690. https://doi.org/10.1073/pnas.0701361104
13. Gurdal, Z., and B. Tatting, 2000. Cellular automata for design of truss structures with linear and nonlinear response. In Proc. 41st AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conf., AIAA Paper.
14. Han, Y., S. J. Goetz, J. J. Lee, and S. Yoon, 2012. Simulating Network Structures Using Bernouilli's Principle. Advances in Complex Systems 15(4): 1250032. https://doi.org/10.1142/S0219525912500324
15. Han, Y., S. J. Goetz, T. Kim, and J. J. Lee, 2013. Estimating Employment-Related Migration from Overlapping Migration and Commuting Networks. Growth and Change 44(3): 474-493. https://doi.org/10.1111/grow.12016
16. Henderson, J. C., and C. De, 1960. Topological aspects of structural analysis. Aircraft in Engineering 32: 137-141. https://doi.org/10.1108/eb033249
17. Kaveh, A., and K. Koohestani, 2007. An efficient graph theoretical method for plate bending finite element analysis via force method. Engineering Computations 24(7): 679-698. https://doi.org/10.1108/02644400710817934
18. Kim, T. G., J. J. Lee, and K. Suh, 2014. Development of a Truss Structure Analysis Model based on Cellular Automata and Object-oriented Simulation Environment. Journal of The Korean Society of Agricultural Engineers 56(3):1-9. (in Korean)
19. Lee, H. K., T. G. Kim, and J. J. Lee. 2012. Development of an Object-oriented Finite Element Model through Iterative Method Ensuring Independency of Elements. Journal of The Korean Society of Agricultural Engineers 54(2):115-125. (in Korean) https://doi.org/10.5389/KSAE.2012.54.2.115
20. Newman, M. E. J., 2004. Fast algorithm for detecting community structure in networks. Physical Review E 69:066133 https://doi.org/10.1103/PhysRevE.69.066133
21. Querin, O. M., V. Young, G. P. Steven, and Y. M. Xie, 2000. Computational efficiency and validation of bi-directional evolutionary structural optimisation. Computer Methods in Applied Mechanics and Engineering 189(2): 559-573. https://doi.org/10.1016/S0045-7825(99)00309-6
22. Ravasz, E., and A. -L. Barabasi, 2003. Hierarchical organization in complex networks. Physical Review E 67: 026112. https://doi.org/10.1103/PhysRevE.67.026112
23. Ravasz, E., A. L. Somera, D. A. Mongru, Z. N. Oltvai, A. -L. Barabasi, 2002. Hierarchical Organization of Modularity in Metabolic Networks. Science 297: 1551-1555. https://doi.org/10.1126/science.1073374
24. Smith, D. A., and D. R. White, 1999. Structure and Dynamics of the Global Economy; Network Analysis of International Trade 1965-1980. Social Forces 70(4): 857-893. https://doi.org/10.1093/sf/70.4.857
25. Watts, D. J., and S. H. Strogatz, 1998. Collective dynamics of 'small-world' networks. Nature 393: 440-442. https://doi.org/10.1038/30918
26. Xie, Y. M., and G. P. Steven, 1993. A simple evolutionary procedure for structural optimization. Computers & Structures 49(5): 885-896. https://doi.org/10.1016/0045-7949(93)90035-C