DOI QR코드

DOI QR Code

Rake Receiver Based on Bit Error Rate of Training Sequence Duration for Underwater Acoustic Communication

수중음향통신을 위한 훈련 신호 구간의 비트 오차율에 기반한 레이크 수신기

  • Son, Ji-hong (Department of Radio Communication Engineering, Korea Maritime and Ocean University) ;
  • Kim, Ki-man (Department of Radio Communication Engineering, Korea Maritime and Ocean University)
  • Received : 2016.02.19
  • Accepted : 2016.03.18
  • Published : 2016.05.31

Abstract

In the underwater acoustic communication channels, a multipath reflection becomes the cause of obstacle. To solve this problem, a rake receiver has been required for which one could take the time diversity. However, there is a concern about using incorrect path to recover signals with a high weighting value as underwater acoustic communication channels have severe time-variant property. In order to prevent these problem, a rake receiver is proposed which is based on BER(bit error rate) train sequence duration. The performance is evaluated through lake trials; there are three methods that are a proposed rake receiver, a conventional rake receiver, and a non-rake receiver. As a result, the number of bit errors in the proposed rake receiver, that of bit errors in the conventional rake receiver, and that of bit errors in the non-rake receiver is 8, 45, and 72, respectively.

수중음향통신 채널은 다중 경로 전달이 주요 장애 요인이 되며, 이러한 문제점을 해결하기 위해 레이크 수신기를 이용하여 이를 통해 시간 다이버시티 효과를 얻을 수 있다. 그러나 수중음향통신 채널은 시변동성이 높은 채널로써 적합하지 못한 경로의 신호를 복조에 이용하게 될 우려가 있다. 이를 방지하기 위해 본 논문에서는 훈련 신호의 오차율에 기반을 두어 경로 선택 및 가중치 할당하는 레이크 수신기를 제안한다. 호수 실험을 통해 제안된 레이크 수신기와 기존의 레이크 수신기, 레이크 방법을 사용하지 않은 일반 수신기를 이용하여 성능을 분석하였다. 분석 결과, 전송비트 512개 중에서 제안된 레이크 수신기는 8개, 기존의 레이크 수신기는 45개, 그리고 레이크 수신기를 사용하지 않은 일반 수신기는 72개의 비트오류가 발생하였다.

Keywords

References

  1. X. Lurton, An Introduction to Underwater Acoustics: Principles and Applications, Berlin, Springer, 2002.
  2. F. B. Jensen, W.A. Kuperman, M.B. Porter, and H. Schmidt, Computational Ocean Acoustics, Woodbury : NY, AIP Press, 1994.
  3. L. Brekhovskikh and Y. Lysanov, Fundamentals of Ocean Acoustics, New York : NY, Springer-Verlag, 1982.
  4. R.J. Urick., Principles of Underwater Sound, New York : NY, McGraw-Hill, 1983.
  5. Bernard Sklar, Digital Communications: Fundamentals and Applications, 2nd Edition, Upper Saddle River : NJ, Prentice Hall, 2001.
  6. K.M. Krishna, A. Mitra and C. Ardil, "A simplified single correlator rake receiver for CDMA communications," International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol.4, no.2, pp.381-384, Feb. 2010.
  7. F. Blackmon, E. Sozer, M. Stojanovic, and J. Proakis, "Performance comparison of RAKE and hypothesis feedback direct sequence," Proc. MTS/IEEE Oceans, vol.1, pp.594-603, Oct. 2002.
  8. T.C. Yang and Wen-Bin Yang, "Low probability of detection underwater acoustic communications using direct-sequence spread spectrum," J. Acoust. Soc. Amer, vol.124, no.6, pp.3632-3647, Dec. 2008. https://doi.org/10.1121/1.2996329
  9. B.S. Sharif, J. Neasham, O.R. Hinton and A.E. Adams, "Computationally efficient doppler compensation system for underwater acoustic communications," IEEE J. Oceanic Eng., vol.25, no.1, pp.52-61, Jan. 2000. https://doi.org/10.1109/48.820736
  10. Simon Haykin, Adaptive Filter Theory: 4th Edition, Prentice Hall, 2001.
  11. Neptune Sonar Limited. Broad-band spherical projectors. Omni-directional Neptune D/17/BB [Internet]. Available: http://www.neptune-sonar.co.uk/wp-content/uploads/2016/03/Model-D17BB.pdf.
  12. Bruel & Kjaer. Sound & Vibration Measurement A/S. Type 8106 Hydrophone. [Internet]. Available: http://www.bksv.com/Products/transducers/acoustic/hydrophones/8106.