DOI QR코드

DOI QR Code

A Study on Buffeting Responses of a In-service Steel Cable-stayed Bridge Using Full-scale Measurements

실측 데이터를 이용한 공용중인 강사장교의 버페팅 응답 분석

  • 이덕근 (한국시설안전공단 특수교총괄관리센터) ;
  • 공민준 (한국시설안전공단 특수교총괄관리센터) ;
  • 유동우 (한국시설안전공단 스마트시설관리본부)
  • Received : 2015.06.16
  • Accepted : 2016.03.19
  • Published : 2016.06.01

Abstract

In order to analytically evaluate buffeting responses, the analysis of wind characteristics such as turbulence intensity, turbulence length, gust, roughness coefficient, etc must be a priority. Static aerodynamic force coefficients, flutter coefficients, structural damping ratios, aerodynamic damping ratios and natural frequencies affect the analytical responses. The bridge interested in this paper has being been used for 32 years. As the time passes, current terrain conditions around the bridge are different markedly from the conditions it was built 32 years ago. Also, wind environments were considerably varied by the climate change. For this reason, it is necessary to evaluate the turbulence intensity, length, spectrum and roughness coefficient of the bridge site from full-scale measurements using the structural health monitoring system. The evaluation results indicate that wind characteristics of bridge site is analogous to that of open terrain although the bridge is located on the coastal area. To calculate buffeting responses, the analysis variables such as damping ratios, static aerodynamic force coefficients and natural frequency were evaluated from measured data. The analysis was performed with regard to 4 cases. The evaluated variables from measured data are applied to the first and second analysis cases. And the other analysis cases were performed based on Design Guidelines for Steel Cable Supported Bridges. The calculated responses of each analysis cases are compared with the buffeting response measured at less than 25m/s wind speed. It is verified that the responses by the numerical analysis applying the estimated variables based on full-scale measurements are well agreed with the measured actual buffeting responses under wind speed 25m/s. Also, the extreme wind speed corresponding to a recurrence interval 200 years is derived from Gumbel distribution. The derived wind speed for return period of 200 years is 45m/s. Therefore the buffeting responses at wind speed 45m/s is determined by the analysis applying the estimated variables.

공용 중인 교량의 버페팅 응답을 해석적으로 평가하기 위해서는 교량 현장의 난류강도, 난류 스펙트럼, 조도계수, 거스트 계수 등 풍하중에 대한 분석이 우선되어야 하고, 해석 결과는 정적 공기력 계수, 플러터계수, 구조 감쇠비, 공기역학적 감쇠비, 고유 진동수 등 여러 변수에 의해 영향을 받는다. 본 논문에서 대상으로 한 교량은 32년째 공용 중에 있는 교량으로써 교량 주변의 지형조건은 설계 및 시공 당시에 비해 많은 변화가 발생하였으며 최근 기후 변화로 인한 풍 환경 역시 큰 변화가 있다. 이러한 이유로 대상교량에서 실측한 풍속 데이터를 분석하여 난류강도, 난류길이, 지표조도계수, 풍속 스펙트럼 등 교량 현장의 풍하중을 평가하였다. 교량 주변의 풍환경 평가 결과, 대상 교량은 해상교량임에도 불구하고 지표조도구분 II의 특성을 나타내고 있었다. 또한 실측한 구조물의 가속도, 변위 응답 데이터를 통해 대상교량의 감쇠비, 정적 공기력 계수, 고유진동수를 평가하여 계측기반 버페팅 해석 변수를 산정하였다. 계측데이터 기반의 해석 변수와 케이블강교량설계지침에 제시된 해석 변수를 적용하여 총 4가지 경우에 대한 버페팅 해석을 수행하였으며, 그 결과 10분 평균 풍속 25m/s이하에서 측정된 버페팅 응답과 계측 기반 해석 변수를 적용한 해석 응답이 가장 잘 일치함을 확인하였고, 계측 풍속과 Gumbel 확률분포를 이용하여 추정한 200년 재현기대 풍속인 45m/s에서의 버페팅 응답을 제시하였다.

Keywords

References

  1. Bae, Y. G., Han, G. M. and Lee, S. L. (2008). "Statistical estimation of wind speed in the gwangyang-myodo region." Journal of Korean Society of Civil Engineering, KSCE, Vol. 28, No. 2, pp. 197-205.
  2. Brownjohn, J. M. W., Bocciolone, M., Curami, A., Falco, M. and Zasso, A. (1994). "Humber bridge full-scale measurement campaigns 1990-1991." Journal of Wind Engineering and Industrial aerodynamics, Vol. 52, No. 1-3, pp. 185-218. https://doi.org/10.1016/0167-6105(94)90047-7
  3. Cho, H. N., Cha, C. J. and Baik. H. S. (1989). "Probability-Based estimates of basic design wind speeds in Korea." Journal of Computational Structural Engineering Institute of Korea, COSEIK, Vol. 2, No. 2, pp. 63-72 (in Korean).
  4. Davenport, A. G. (1961). "The spectrum of horizontal gustiness near the ground in high wind." Journal of Royal Meteorological Society, Vol. 87, No. 372, pp. 194-211. https://doi.org/10.1002/qj.49708737208
  5. Kaimal, J. C. (1973). "Turbulence spectra, length scales and structure parameters in the stable surface layer." Boundary-Layer Meteorology, Vol. 4, No. 1, pp. 289-309. https://doi.org/10.1007/BF02265239
  6. Kareem, A. and Gurley, K. (1996). "Damping in structures: Its Evaluation and Treatment of Uncertainty." Journal of Wind Engineering and Industrial aerodynamics, Vol. 59, No. 2-3, pp. 131-157. https://doi.org/10.1016/0167-6105(96)00004-9
  7. Kim, B. C. (2013). Buffeting Response of Cable-stayed Bridge using 3-Dimensional Computational Fluid Dynamics, Ph.D. Dissertation, University of Seoul, Korea (in Korean).
  8. Kim, B. C. and Yhim, S. S. (2013). "Buffeting response correction method based on dynamic properties of existing cable-stayed bridge." Journal of Korean Society of Civil Engineering, KSCE, Vol. 33, No. 1, pp. 71-80. https://doi.org/10.12652/Ksce.2013.33.1.071
  9. Kim, H. K., Choi, S. W. and Kim, Y. H. (2006). "Parametric study on the buffeting response for a cable-stayed bridge." Journal of Korean Society of Civil Engineering, KSCE, Vol. 26, No. 2, pp. 371-382 (in Korean).
  10. Kim, H. S., Lee, H. H., Cho, D. Y. and Park, S. K. (2011). "Estimation of design wind speed compatible for long-span bridge in western and southern sea." Journal of The Korea Institute for Structural Maintenance and Inspection, KSMI, Vol. 15, No. 2, pp. 153-160 (in Korean). https://doi.org/10.11112/jksmi.2011.15.2.153
  11. Kim, S. H. (2011). Wind analysis of Cable-Stayed Bridge Considering Aerodynamic Admittance Function, Ph.D. Dissertation, University of Seoul, Korea (in Korean).
  12. Kong, M. S. (2008). Buffeting Analysis of Suspension Bridges during Erection Sequences, Ph.D. Dissertation, University of Seoul, Korea (in Korean).
  13. Korean Society of Civil Engineers (2006). Design Guidelines for Steel Cable-Supported Bridges, KSCE (in Korean).
  14. Macdonald, J. H. G. (2003). "Evaluation of buffeting predictions of a cable-stayed bridge from full-scale measurements." Journal of wind engineering and industrial aerodynamics, Vol. 91, No. 12-15, pp. 1465-1483. https://doi.org/10.1016/j.jweia.2003.09.009
  15. Ministry of Construction and Transportation (2006). Report of Wind Tunnel Test for 2nd Jindo Grand Bridge, MOCT (in Korean).
  16. Miyata, T., Yamada, H., Katsuchi, H. and Kitagawa, M. (2002). "Full-scale measurements of Akashi-Kaikyo Bridge during typhoon." Journal of Wind Engineering and Industrial aerodynamics, Vol. 90, No. 12-15, pp. 1517-1527. https://doi.org/10.1016/S0167-6105(02)00267-2
  17. Simiu, E. and Scanlan, R. H. (1996). Wind Effects on Structures, John Wiley and Sons INC, New York, N.Y.
  18. Tamura, Y., Sasaki, A. and Tsukagoshi, H. (1993). "Evaluation of damping ratios of randomly excited buildings using the random decrement technique." Journal of Struct. and Construction Engineering, Vol. 454, No. 454, pp. 29-38.
  19. Vogel, R. M. (1986). "The probability plot correlation coefficient test for the Normal, Lognormal, and Gumbel Distributional Hypotheses." Water resource research, Vol. 22, No. 4, pp. 587-590. https://doi.org/10.1029/WR022i004p00587
  20. von Karman, T. (1948). "Progress in the statistical theory of turbulence." Proceedings of the National Academy of Sciences of the United States of America, Vol. 34, No. 11, p. 530. https://doi.org/10.1073/pnas.34.11.530
  21. Wang, H., Qun, L. A., Tong, G. and Jing, X. (2009). "Field measurement on wind characteristic and buffeting response of the runyang suspension bridge during typhoon matsa." Science in China Series E: Technological Sciences, Vol. 52, No. 5, 2009, pp. 1354-1362. https://doi.org/10.1007/s11431-008-0238-y
  22. Xu, Y. L. and Zhu, L. D. (2005). "Buffeting response of long-span cable-supported bridges under skew winds. Part 2: Case study." Journal of Sound and Vibration, Vol. 281, No. 3-5, pp. 675-697. https://doi.org/10.1016/j.jsv.2004.01.025