DOI QR코드

DOI QR Code

Modification of Surface Flow Analysis Algorithm in SWAT

SWAT 모형의 지표유출해석 알고리즘 개선

  • Lee, Jeongwoo (Korea Institute of Civil engineering and building Technology) ;
  • Kim, Nam Won (Korea Institute of Civil engineering and building Technology) ;
  • Lee, Jeong Eun (Korea Institute of Civil engineering and building Technology)
  • 이정우 (한국건설기술연구원 수자원연구실) ;
  • 김남원 (한국건설기술연구원 수자원연구실) ;
  • 이정은 (한국건설기술연구원 수자원연구실)
  • Received : 2016.03.23
  • Accepted : 2016.04.26
  • Published : 2016.06.01

Abstract

SWAT model usually underestimates daily peak discharges. To resolve this problem, in this study, the algorithm related with the surface flow simulation was modified by partitioning excessive infiltration based on the relative length between overland flow time of concentration and percolation travel time in soil water zone and by computing time of concentration varying with the amount of surface flow. The modified SWAT was applied to the Chungju dam watershed to assess the increasing effects of daily peak discharges. The daily peaks simulated by the modified SWAT were on average 10% higher than those by original SWAT for the peaks above $5,000m^3/s$. The modified SWAT was found to be able to more accurately reproduce daily peaks, particularly showing increase rates of 9.9%, 18.6% and 12.6%, respectively, for top three peaks that occurred in the years of 1990, 2002, and 2006.

본 연구에서는 SWAT 모형으로 일 유출량을 모의할 경우에 수문곡선의 첨두부가 과소하게 산정되는 문제를 개선하기 위해서 지표유출의 집중 시간과 토양수의 연직 유하시간의 상대적 길이를 고려하여 초과침투량의 일부를 지표유출량에 추가로 할당하고 지표유출량의 크기에 따라 집중 시간이 가변적으로 계산되도록 지표유출해석 알고리즘을 수정하였다. 개선된 SWAT 모형을 충주댐 상류유역에 적용한 결과 첨두유량이 $5,000m^3/s$를 넘는 경우 평균적으로 약 10% 만큼 첨두부 증가효과를 나타내었다. 특히 큰 홍수가 발생하였던 1990년, 2002년, 2006년 세 개 사상에 대해 각각 9.9%, 18.6%, 12.6% 만큼 첨두유량이 증가하는 등 일 유출수문곡선의 첨두부를 보다 정확하게 모의하였다.

Keywords

References

  1. Arnold, J. G., Srinivasan, R., Muttiah, R. S. and Williams, J. R. (1998). "Large area hydrologic modeling and assessment part I: model development." Journal of American Water Resources Association, JAWRA, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  2. Arnold, J. G., Williams, J. R. and Maidment, D. R. (1995). "Continuous time water and sediment routing model for large basins." Journal of Hydraulic Engineering, Vol. 121, No. 2, pp. 171-183. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:2(171)
  3. Arnold, J. G., Williams, J. R., Nicks, A. D. and Sammons, N. B. (1990). SWRRB-A basin scale simulation model for soil and water resources management, Texas A&M University Press, College Station, p. 255.
  4. Borah, D. K., Arnold, J. G., Bera, M., Krug, E. C. and Liang, X. Z. (2007). "Storm event and continuous hydrologic modeling for comprehensive and efficient watershed simulations. Journal of Hydrologic Engineering, ASCE, Vol. 12, No. 6, pp. 605-616. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(605)
  5. Bosch, D., Sheridan, J., Batten, H. and Arnold, J. (2004). "Evaluation of the SWAT model on a coastal plain agricultural watershed." Transactions of ASAE, Vol. 47, No. 5, pp. 1493-1506. https://doi.org/10.13031/2013.17629
  6. Bryant, R. B., Gburek, W. J., Veith, T. L. and Hively, W. D. (2006). "Perspectives on the potential for hydropedology to improve watershed modeling of phosphorus loss." Geoderma, Vol. 131, pp. 299-307. https://doi.org/10.1016/j.geoderma.2005.03.011
  7. Eckhardt, K., Haverkamp, S., Fohrer, N. and Frede, H.-G. (2002). "SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments." Physics and Chemistry of the Earth, Vol. 27, pp. 641-644. https://doi.org/10.1016/S1474-7065(02)00048-7
  8. Fohrer, N., Haverkamp, S. and Frede, H.-G. (2005). "Assessment of the effects of land use patterns on hydrologic landscape functions: development of sustainable land use concepts for low mountain range areas." Hydrological Processes, Vol. 19, No. 3, pp. 659-672. https://doi.org/10.1002/hyp.5623
  9. Govender, M. and Everson, C. S. (2005). "Modelling streamflow from two small south african experimental catchments using the SWAT model." Hydrological Processes, Vol. 19, pp. 683-692. https://doi.org/10.1002/hyp.5621
  10. Henderson, F. M. and Wooding, R. A. (1964). "Overland flow and groundwater flow from a steay rainfall of finite duration." Journal of Geophysical Research, Vol. 69, No. 8, pp. 1531-1540. https://doi.org/10.1029/JZ069i008p01531
  11. Huber, W. C. and Dickinson, R. E. (1988). Storm Water Management Model User's Manual, Version 4. EPA/600/3-88/001a (NTIS PB88-236641/AS), Athens, Ga.: Environmental Protection Agency.
  12. Izaurralde, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J. and Quiroga, J. M. C. (2006). "Simulating soil C dynamics with EPIC: Model description and testing against long-term data." Ecological Modeling, Vol. 192, No. 3-4, pp. 362-384. https://doi.org/10.1016/j.ecolmodel.2005.07.010
  13. Kannan, N., Santhi, C., Williams, J. R. and Arnold, J. G. (2007). "Development of a continuous soil moisture accounting procedure for curve number methodology and its behaviour with different evapotranspiration methods." Hydrological Processes, Vol. 22, No. 13, pp. 2114-2121. DOI: 10.1002/hyp.6811.
  14. Kim, N. W. and Lee, J. (2008). "Temporally weighted average curve number method for daily runoff simulation." Hydrological Processes, Vol. 22, No. 25, pp. 4936-4948. https://doi.org/10.1002/hyp.7116
  15. Kim, N. W., Chung, I. M., Won, Y. S. and Arnold, J. G. (2008). "Development and application of the integrated SWAT-MODFLOW model." Journal of Hydrology, Vol. 356, pp. 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024
  16. Kim, N. W., Lee, B. J. and Lee, J. E. (2007). "Analysis of the characteristics of low-flow behavior based on spatial simulated flows." Journal of the Korea Society of Civil Engineering, Vol. 27, No. 4B, pp. 431-440 (in Korean).
  17. Kim, N. W. and Lee, J. E. (2005). "Assessment of probability flood according to the flow regulation by multi-purpose dams in Han-River basin." Journal of Water Resources Research, Vol. 42, No. 2, pp. 161-169 (in Korean).
  18. Kim, N. W., Won, Y. S., Lee, J., Lee, J. E. and Jeong, J. (2011). "Hydrological impacts of urban imperviousness in white rock creek watershed." Transactions of the ASABE, Vol. 54, No. 5, pp. 1759-1771. https://doi.org/10.13031/2013.39848
  19. Knisel, W. G. (1980). "CREAMS: A field scale model for chemicals, runoff, and erosion from agricultural management systems." USDA Conservation Research Report, Vol. 26, p. 643.
  20. Knisel, W. G., Davis, F. M. and Leornard, R. A. (1994). GLEAMS VERSION 2.0Part III: User Manual, USDA-ARS, Coastal Plain Experiment Station, Southeast Watershed Research Laboratory: Tifton, Georgia, 31793.
  21. Krysanova, V., Wechsung, F. and Arnold, J. G. (2000). SWIM User Manual, Potsdam Institute for Climate Impact Research: Potsdam, Germany.
  22. Kuntiyawichai, K., Schultz, B., Uhlenbrook, S., Suryadi, F. X. and Corzo, G. A. (2011). "Comprehensive flood mitigation and management in the Chi river basin, Thailand." Lowland Technology International, Vol. 13, No. 1, pp. 10-18.
  23. Leonard, R. A., Knisel, W. G. and Still, D. A. (1987). "GLEAMS: Groundwater loading effects on agricultural management systems." Transactions of the ASAE, Vol. 30, No. 5, pp. 1403-1428. https://doi.org/10.13031/2013.30578
  24. Neitsch, S. L., Arnold, J. R., Williams, J. R. and King, K. W. (2005). Soil and water Assessment Tool, Theoretical Documentation, Version 2000, Grassland, Soil, and Water Research Laboratory, Agricultural Research Service: USDA Temple Texas. Published by Texas Water Resources Institute, College Station, TX. TWRI Report TR-191.
  25. Rossman, L. A. (2004). Storm Water Management Model User's Manual, Version 5.0, Cincinnati, Ohio: U.S. EPA National Risk Management Research Laboratory, Water Supply and Water Resources Division.
  26. Van Liew, M. W. and Garbrecht, J. (2003). "Hydrologic simulation of the little Washita river experimental watershed using SWAT." Journal of the American Water Resources Association, Vol. 39, No. 2, pp. 413-426. https://doi.org/10.1111/j.1752-1688.2003.tb04395.x
  27. Woolhiser, D. A. and Liggett, J. A. (1967). "Unsteady one-dimensional flow over a plane-the rising hydrograph." Water Resources Research, Vol. 3, No. 3, pp. 753-771. https://doi.org/10.1029/WR003i003p00753
  28. Xie, X. and Cui, Y. (2011). "Development and test of SWAT for modeling hydrological processes in irrigation districts with paddy rice." Journal of Hydrology, Vol. 396, No. 1, pp. 61-71. https://doi.org/10.1016/j.jhydrol.2010.10.032
  29. Yen, B. C. and Chow, V. T. (1983). Local design storms: Vol. III, H 38 FHWA-RD-82/065, U.S. Dept. of Transportation, Federal Highway Administration, Washington, DC.