DOI QR코드

DOI QR Code

Evaluation of the Effect of Initial Condition of the Granular Assembly on the Bearing Capacity of the Shallow Foundation using Photoelastic Measurement Technique

광탄성 측정 기법을 이용한 입상체 초기 조건의 얕은 기초 지지력에 대한 영향 평가

  • 신상영 (경희대학교 사회기반시스템공학과) ;
  • 정영훈 (경희대학교 사회기반시스템공학과)
  • Received : 2015.11.12
  • Accepted : 2016.04.25
  • Published : 2016.06.01

Abstract

Traditional limit equilibrium method needs an assumption of the failure surface to calculate the bearing capapcity of the shallow foundation. From the viewpoint of the mechanics of granular materials, however, the failure of the soil mass is initated by the local buckling of the contact force chains. In this study we observed the directional distribution of the contact force chains in the granular assembly stacked by model particles subjected to the model shallow foundation during loading. Two sets of the assemblies with a regular structure and initially local imperfection were prepared for tests. Existence of the initial local imperfection has a significant effect on the directional distribution of the contact force chains. The bearing capacity of the assembly with local imperfection is only 67% the capacity of the assembly with the regular structure.

고전적인 한계 평형 해석에서 얕은 기초의 지지력은 토체 내부의 파괴면을 가정하여 시작한다. 하지만 입상체 역학의 관점에서 토체의 파괴는 접촉력 사슬 구조의 국부적인 좌굴에 의해 시작된다. 본 연구에서는 모형 토립자를 이용하여 구성한 입상체 상부에 얕은 기초 하중을 재하하여 파괴 시까지 입상체 내부의 접촉력 사슬 분포가 어떻게 변화하는지 관찰하였다. 초기 결함이 없이 규칙적인 구조를 가지는 조건과 입상체 하부에 초기 국부적인 불완전성이 있는 조건을 가진 두 가지 종류의 입상체를 준비하여 실험하였다. 입상체 내부에서 발생하는 접촉력 사슬 구조의 방향 분포는 초기 불완전성의 여부에 따라 매우 큰 차이를 보였다. 초기 불완전성이 있는 입상체는 결함이 없는 입상체가 견딘 하중의 67%만을 견딜 수 있었다.

Keywords

References

  1. Aharonov, E. and Sparks, D. (2004). "Stick-slip motion in simulated granular layers." Journal Geophys. Res., 109.
  2. Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H. J., Weatherley, D. and Mora, P. (2006). "Effect of rolling on dissipation in fault gouges", Phys. Rev. E, Vol. 74, No. 3.
  3. Byeon, B.-H. and Jung, Y.-H. (2013). "Measurement of stress and displacement fields in particle assembly subjected to shallow foundation loading via photoelasticity technique." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1947-1955. https://doi.org/10.12652/Ksce.2013.33.5.1947
  4. Corwin, E. I., Jaeger, H. M. and Nagel, S. (2005). "Structural signature of jamming in granular media." Nature, Vol. 435, pp. 1075-1078. https://doi.org/10.1038/nature03698
  5. Harr, M. E. (1987). Reliability based design in civil engineering, Dover Publication, Inc.
  6. Li, F. (2010). Study of stress measurement using polariscope, Ph.D thesis, Georgia Institute of Technology.
  7. Majmudar, T. S. and Behringer, R. P. (2005). "Contact force measurements and stress induced anisotropy in granular materials." Nature, Vol. 435, No. 7045, p. 1079. https://doi.org/10.1038/nature03805
  8. Oda, M. and Kazama, H. (1998). "Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils." Geotechnique, Vol. 48, No. 4, p. 465. https://doi.org/10.1680/geot.1998.48.4.465
  9. Oda, M., Takemura, T. and Takahashi, M. (2004). "Microstructure in shear band observed bymicrofocus X-ray computed tomography." Geotechnique, Vol. 54, No. 8, p. 539. https://doi.org/10.1680/geot.2004.54.8.539
  10. Phoon, K. K. and Kulhawy, F. H. (1999). "Characterization of geotechnical variability." Canadian Geotechnical Journal, Vol. 36, No. 4, pp. 612-624. https://doi.org/10.1139/t99-038
  11. Prandtl, L. (1921). Uber die Harte plastischer Korper, Nachr. Kgl. Ges. Wiss. Gottingen, Math. Phys. Klasse.
  12. Rechenmacher, A. L. (2006). "Grain-scale processes governing shear band initiation and evolution in sands" Journal Mech. Phys. Solids, Vol. 54, No. 1, pp. 22-45. https://doi.org/10.1016/j.jmps.2005.08.009
  13. Terzaghi, K. (1943). Theoretical Soil Mechanics. John Wiley and Sons, Inc., New York.
  14. Thornton, C. and Zhang, L. (2006). "A numerical examination of shear banding and simple shear non-coaxial flow rules." Philos. Mag., Vol. 86, No. 21-22, pp. 3425-3452. https://doi.org/10.1080/14786430500197868
  15. Tordesillas, A. and Muthuswamy, M. (2009). "On the modeling of confined buckling of force chains." Journal of the Mechanics and Physics of Solids, Vol. 57, pp. 706-727. https://doi.org/10.1016/j.jmps.2009.01.005
  16. Tordesillas, A., Zhang, J. and Behringer, R. (2009). "Buckling force chains in dense granular assemblies: Physical and Numerical Experiments." Geom. Geoeng., Vol. 4, No. 1, pp. 3-16. https://doi.org/10.1080/17486020902767347