DOI QR코드

DOI QR Code

Prediction of Divided Traffic Demands Based on Knowledge Discovery at Expressway Toll Plaza

지식발견 기반의 고속도로 영업소 분할 교통수요 예측

  • 안병탁 (인천대학교 대학원) ;
  • 윤병조 (인천대학교 도시과학대학 도시공학과)
  • Received : 2015.11.03
  • Accepted : 2015.12.08
  • Published : 2016.06.01

Abstract

The tollbooths of a main motorway toll plaza are usually operated proactively responding to the variations of traffic demands of two-type vehicles, i.e. cars and the other (heavy) vehicles, respectively. In this vein, it is one of key elements to forecast accurate traffic volumes for the two vehicle types in advanced tollgate operation. Unfortunately, it is not easy for existing univariate short-term prediction techniques to simultaneously generate the two-vehicle-type traffic demands in literature. These practical and academic backgrounds make it one of attractive research topics in Intelligent Transportation System (ITS) forecasting area to forecast the future traffic volumes of the two-type vehicles at an acceptable level of accuracy. In order to address the shortcomings of univariate short-term prediction techniques, a Multiple In-and-Out (MIO) forecasting model to simultaneously generate the two-type traffic volumes is introduced in this article. The MIO model based on a non-parametric approach is devised under the on-line access conditions of large-scale historical data. In a feasible test with actual data, the proposed model outperformed Kalman filtering, one of a widely-used univariate models, in terms of prediction accuracy in spite of multivariate prediction scheme.

고속도로의 주요 영업소 톨부스는 일반적으로 2개 차종(경차포함 승용차, 승용차 이외의 중차량)의 교통수요 변동에 따른 사전 대응방식으로 각 차종에 대하여 운영된다. 이러한 의미에서 2개 차종에 대한 정확한 교통량 예측은 영업소의 첨단 운영에 있어 주요 요소 중 하나이다. 유감스럽게도, 기존 연구로 보고된 현행의 일변량 단기 예측 기법들을 이용하여 2개 차종의 교통량을 동시에 예측하기는 용이하지 않다. 이러한 실용적 학술적 배경으로 인해 수용 가능한 정확도의 수준에서 2개 차종의 장래 교통량 예측은 ITS 예측 분야의 매력적인 연구 주제 중 하나이다. 따라서 본 연구에서는 기존의 일변량 단기 예측기법의 단점을 극복함과 더불어 2개 차종의 교통량을 동시에 예측하기 위한 다중 입출력(Multiple In-and-Out, MIO) 모형을 제시하도록 한다. 제안된 MIO 모형은 대용량 이력자료의 실시간 이용이 가능한 자료 환경에서 비모수 접근법을 기반으로 개발되었다. 실제 자료를 이용한 적용가능 실험에서, 개발모형은 다변량 예측 수준에도 불구하고 폭 넓게 이용되는 일변량 예측모형 중 하나인 Kalman filtering에 비하여 예측 정확도 측면에서 우수하게 나타났다.

Keywords

References

  1. Altman, N. S. (1992). "An introduction to kernel and nearestneighbor nonparametric regression." The American Statistician, Vol. 46, No. 3, pp. 175-185.
  2. Chang, H. H., Lee, Y. I., Baek, S. K. and Yoon, B. J. (2012a). "Dynamic near- term traffic flow prediction: system-oriented approach based on past experiences." IET Intelligent Transport Systems, IEEE, Vol. 6, No. 3, pp. 292-305. https://doi.org/10.1049/iet-its.2011.0123
  3. Chang, H. H., Park, D. J., Lee, S. J., Lee, H. S. and Baek, S. K. (2010). "Dynamic multi-interval bus travel time prediction using bus transit data." Transportmetrica. Taylor & Francis, Vol. 6, No. 1, pp. 19-38.
  4. Chang, H. H., Park, D. J., Lee, Y. I. and Yoon, B. J. (2012b). "Multiple time period imputation technique for multiple missing traffic variables: Nonparametric Regression Approach." Canadian Journal of Civil Engineering, NRC Research Press, Vol. 39, pp. 448-459. https://doi.org/10.1139/l2012-018
  5. Clark, S. (2003). "Traffic predicting using multivariate nonparametric regression." Journal of Transportation Engineering, ASCE, Vol. 129, No. 2, pp. 161-168. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:2(161)
  6. Davis, G. and Nihan, N. (1991). "Nonparametric regression and short-term freeway traffic forecasting." Journal of Transportation Engineering, ASCE, Vol. 117, No. 2, pp. 178-188. https://doi.org/10.1061/(ASCE)0733-947X(1991)117:2(178)
  7. Disbro, J. E. and Frame, M. (1989). "Traffic flow theory and chaotic behavior." New York State Department of Transportation Report FHWA/NY/SR-98/91, New York.
  8. Kalman, R. E. (1960). "A new approach to linear filtering and prediction problems." Journal of Basic Engineering, ASME, Vol. 82, No. 1, pp. 35-45. https://doi.org/10.1115/1.3662552
  9. Karlsson, M. and Yakowitz, S. (1987). "Rainfall-runoff forecasting methods, old and new." Stochastic Hydrology and Hydraulics, Springer, Vol. 1, No. 4, pp. 303-318. https://doi.org/10.1007/BF01543102
  10. Mori, U., Mendiburu, A., Alvarez, M. and Locano, J. A. (2015). "A review of travel time etstimation and forecasting for advanced traveler information systems." Transportmetrica A: Transport Science, Taylor & Francis, Vol. 11, No. 2, pp. 119-157. https://doi.org/10.1080/23249935.2014.932469
  11. Mulhern, F. J. and Caprara, R. J. (1994). "A nearest neighbor model for forecasting market response." International Journal of Forecasting, Elsevier, Vol. 10, No. 2, pp. 191-207. https://doi.org/10.1016/0169-2070(94)90002-7
  12. Oswald, R. K., Scherer, W. T. and Smith B. (2000). "Traffic flow forecasting using approximate Nearest Neighbor Nonparametric regression." A research project report for U.S. DOT University transportation center.
  13. Robinson, P. (1983). "Nonparametric estimators for time series." Journal of Time Series Analysis, Wiley, Vol. 4, No. 3, pp. 185-207. https://doi.org/10.1111/j.1467-9892.1983.tb00368.x
  14. Smith, B. L. and Demetsky, M. J. (1996). "Multiple-interval freeway traffic flow forecasting." Transportation Research Record, TRB, Issue 1554, pp. 136-141. https://doi.org/10.3141/1554-17
  15. Smith, B. L. and Demetsky, M. J. (1997). "Traffic flow forecasting: Comparison of Modeling Approaches." Journal of Transportation Engineering, ASCE, Vol. 123, No. 4, pp. 261-266. https://doi.org/10.1061/(ASCE)0733-947X(1997)123:4(261)
  16. Smith, B. L. and Oswald, R. K. (2003). "Meeting real time traffic flow forecasting requirements with imprecise computations." Computer-Aided Civil Infrastructure Engineering, Wiley, Vol. 18, No. 3, pp. 201-213. https://doi.org/10.1111/1467-8667.00310
  17. Smith, B. L., Williams, B. M. and Oswald, R. K. (2002). "Comparison of parametric and nonparametric models for traffic flow forecasting." Transportation Research Part C, Elsevier, Vol. 10, No. 4, pp. 303-321. https://doi.org/10.1016/S0968-090X(02)00009-8
  18. Turochy, R. E. (2006). "Enhancing short-term traffic forecasting with traffic condition information." Journal of Transportation Engineering, ASCE, Vol. 132, No. 6, pp. 469-474. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:6(469)
  19. Vlahogianni, E. I., Golias, J. C. and Karlaftis, M. G. (2004). "Short-term traffic forecasting: overview of objectives and methods." Transport Reviews, Taylor & Francis, Vol. 24, No. 5, pp. 533-557.
  20. Vlahogianni, E. I., Karlaftis, M. G. and Golias, J. C. (2005). "Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach." Transportation Research Part C, Elsevier, Vol. 13, No. 3, pp. 211-234. https://doi.org/10.1016/j.trc.2005.04.007
  21. Vlahogianni, E. I., Karlaftis, M. G. and Golias, J. C. (2006). "Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume." Transportation Research Part C, Elsevier, Vol. 14, No. 5, pp. 351-367. https://doi.org/10.1016/j.trc.2006.09.002
  22. Vlahogianni, E. I., Karlaftis, M. G. and Golias, J. C. (2014). "Short-term traffic forecasting: where we are and where we're going." Transportation Research Part C, Elsevier, Vol. 43, Part 1, pp. 3-19. https://doi.org/10.1016/j.trc.2014.01.005
  23. Yoon, B. J. (2011). "A study on the development of a technique to predict missing travel speed collected by taxi probe." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 31, No. 1D, pp. 43-50 (in Korea).
  24. Yoon, B. J. and Chang, H. H. (2014). "Potentialities of data-driven nonparametric regression in urban signalized traffic flow forecasting." Journal of Transportation Engineering, ASCE, Vol. 140, No. 2. DOI: 10.1061/(ASCE)TE.1943-5436.0000662.
  25. Zheng, Z. and Su, D. (2014). "Short-term traffic forecasting: A k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm." Transportation Research Part C, Elsevier, Vol. 43, Part 1, pp. 143-157. https://doi.org/10.1016/j.trc.2014.02.009