DOI QR코드

DOI QR Code

Productivity Analysis on Real-time Path Monitoring of Dumps

덤프의 이동경로 모니터링을 통한 생산성 분석

  • 이학준 (한양대학교 건설환경공학과) ;
  • 권영민 (한양대학교 건설관리학과) ;
  • 윤차웅 (한양대학교 건설환경공학과) ;
  • 서종원 (한양대학교 건설환경공학과)
  • Received : 2016.01.27
  • Accepted : 2016.04.11
  • Published : 2016.06.01

Abstract

This study check the construction site and borrow pit location using GIS-based Open Global Map. Construction Equipment (Dump, Grader) utilizes the GPS (Global Positioning System) to gain equipment's real-time position, speed, altitude, using the data such as directions to perform real-time monitoring. The analysis of the productivity is completed through using the data, and the optimal number of equipment is calculated. It was found that the analysis results showed approximately 30% less cost compared to the actual design plan.

본 연구에서는 GIS 기반의 오픈 Global Map을 이용하여 공사현장과 토취장의 위치를 확인하고, 덤프와 그레이더 등의 건설장비에 GPS(Global Positioning System)를 부착하여 장비의 실시간 위치, 속도, 고도, 방향등의 Data를 이용하여 실시간 모니터링을 진행하고, Data를 이용하여 생산성 분석을 진행하여 최적 장비 대수를 도출하고 시공단계에서 실시한 설계단가와 모니터링을 통한 장비 생산량으로 도출된 총 경비와 비교한 결과 총 경비 30%정도 적게 나오는 것을 알 수 있었다.

Keywords

References

  1. Amirkhanian, S. and Baker, N. (1992). "Expert system forequipment selection for earth-moving operation." Journal Constr. Eng. Manage., Vol. 118, No. 2, pp. 318-331. https://doi.org/10.1061/(ASCE)0733-9364(1992)118:2(318)
  2. Balqies, S. and Omar, A.-B. (2007). "LBS and GIS technology combination and applications." AICCSA '07. IEEE/ACS International Conference on, Computer Systems and Applications, pp. 578-583.
  3. Cheng, Z., eAmin, H. and Homam, B. (2009). "Collaborative multi-agent systems for construction equipment based on real-time field data capturing." ITcon, Vol. 14, Special Issue, pp. 204-228.
  4. Easa, S. M. (1988). "Improved method for locating centroid of earthwork." Journal of Surveying Engineering, ASCE, Vol. 114, No. 1, pp. 13-25. https://doi.org/10.1061/(ASCE)0733-9453(1988)114:1(13)
  5. Kim, S. K. and Russell, J. S. (2003b). "Framework for an intelligent earthwork system: Part II. Task identification/scheduling and resource allocation methodology." Automation in Construction, Vol. 12, No. 1, pp. 15-27. https://doi.org/10.1016/S0926-5805(02)00033-X
  6. Marzouk, M. and Moselhi, O. (2004). "Fuzzy clustering model for estimating haulers' travel time." Journal of Construction Engineering and Management, ASCE, Vol. 130, No. 6, pp. 878-886. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:6(878)
  7. Moselhi, O. and Alshibani, A. (2009). "Optimization of earthmoving operations in heavy civil engineering projects." Journal of Construction Engineering and Management, ASCE, Vol. 135, No. 10, pp. 948-954. https://doi.org/10.1061/(ASCE)0733-9364(2009)135:10(948)
  8. Jeong, M. G., Kim, C. S., Kang, B. S. and Kim, J. W. (2000). "The design of control system for mobile objects using the GPS / GIS and wireless communication." Korea Information Science Society, Vol. 27, No. 1, pp. 289-291.
  9. Smith, S. (1999). "Earthmoving productivity estimation using linear regression techniques." Journal of Construction Engineering and Management, ASCE, Vol. 125, No. 3, pp. 131-141.
  10. Guionmet, T., Guilemost, C. and Pateux, S. (2001). "Embedded multiple description cording for progressive image transmission over unrelizble channels." Proc IEEE Trans., pp. 1005-1008.
  11. Tam, C. M., Tong, T. L. and Wong, B. L. (2007). "An integrated system for earthmoving planning." Journal of Construction Management and Economics, ASCE, Vol. 25, pp. 1125-1135.
  12. Yoon, J. G. and Han, K. J. (2002). "Develop of LBS (Loaction Based Service)." The Magazine of the IEEK 29(12), The Institute of Electronics Engineers of Korea, Vol. 29, No. 12, pp. 21-30.
  13. Zhang, H. (2008). "Multi-objectives simulation-optimization for earthworkmoving operations." Automation in Construction, Vol. 18, No. 1, pp. 78-86.