DOI QR코드

DOI QR Code

물리적인 교란 (여름 강우)에 대한 동물플랑크톤 서식처로서 수생식물의 중요성

Role of Aquatic Macrophytes as Refuge of Zooplankton on Physical Distribution (Summer Rainfall) in Shallow Wetlands

  • 최종윤 (국립생태원 생태평가연구실) ;
  • 김성기 (국립환경과학원 낙동강물환경연구소) ;
  • 김동환 (국립생태원 생태평가연구실) ;
  • 주기재 (부산대학교 생명과학과)
  • 투고 : 2016.09.29
  • 심사 : 2016.11.10
  • 발행 : 2016.12.31

초록

물리적인 교란(강우 발생)에 대한 동물플랑크톤의 피난처로서 수생식물의 역할을 평가하기 위해, 경상남도에 위치한 17개 습지의 수변부와 개방수역에서 환경 요인, 수생식물, 동물플랑크톤 등에 대해 조사하였다. 조사기간 동안, 총 51종의 동물플랑크톤이 출현하였으며, Polyarthra sp. 및 Diaphanosoma brachyurum 등의 부유성 성향을 가진 종이 주로 우점하였다. 습지의 수변부에서는 털물참새피, 마름, 붕어마름 등 10종 정도의 수생식물이 출현하였으며, 습지에 따라 종조성이나 생체량 등이 상이하였다. 이와 대조적으로, 개방수역에서는 수생식물이 거의 관찰되지 않았다. 대부분의 습지에서 개방수역보다 수변부에서 더 높은 동물플랑크톤 밀도가 관찰되었으며, 특히 1번, 8번, 9번, 10번, 11번, 16번 습지의 수변부에 서식하는 동물플랑크톤 군집은 강우 발생에 거의 영향을 받지 않거나 증가된 밀도를 보였다. 이들 습지의 수변식생대는 침수식물이 공통적으로 나타났으며, 다른 습지보다 상대적으로 다양한 수생식물종에 의해 구성된 특징을 가졌다. 침수식물이 수생식물 중 가장 복잡한 구조를 가지는 점을 감안하면, 침수식물의 존재는 식생대 내 서식처 복잡성에 크게 기여하며 강우와 같은 교란 요인에 저항하기 위한 피난처로서 높은 효율성을 가질 수 있다. 또한 침수식물은 서식 특성상 다양한 식물과 공존이 가능하며, 식생대 내 수생식물의 생체량을 증가시켜 더욱 복잡하게 만든다. 이러한 관점에서, 수생식물은 강우와 같은 교란 발생에 대한 생물다양성의 유지 및 증가에 크게 영향을 미치며, 우리나라와 같이 여름철에 강우가 집중되는 지역의 경우 플랑크톤 등 생물상에 대한 천이에 중요하게 고려되어야 할 것으로 사료된다.

In order to evaluate the role of macrophytes as refuge of zooplankton on physical distribution (i.e. summer rainfall), we investigated the environmental factors, macrophytes, and zooplankton in waterside zones (macrophytes zones) and open water zones of 17 wetlands from May and August, 2011. In this study, a total of 51 zooplankton species were identified, and Polyarthra sp. and Diaphanosoma brachyurum were found to be the most dominant species. Waterside area of each wetland were occupied by a total of 10 macrophyte species, species composition and biomass (dry weight) were different in the survey sites. Zooplankton was more abundant in waterside zone than open water zones lacking macrophytes (One-way ANOVA, df=2, F=27.1, P<0.05), in particular, waterside zone of 1, 8, 9, 10, and 11 wetland were supported by high zooplankton density after summer rainfall. This wetlands were developed by various macrophyte species than other wetland, and submerged plant commonly presented. Waterside zones with various macrophyte species provides complexity to the habitat structure, should be utilized as refuge to avoid disturbance such as summer rainfall. The results indicate that macrophytes are the key components to enhance bio-diversity include zooplankton, and the inclusion of diverse plant species in wetland construction or restoration schemes will result in ecologically healthy food webs.

키워드

참고문헌

  1. Alexander, V., C.S. Whalen and K.M. Klingensmith. 1989. Nitrogen cycling in arctic lakes and ponds. Hydrobiologia 172: 165-172. https://doi.org/10.1007/BF00031619
  2. Angeler, D.G., M. Alvarez-Cobelas, C. Rojo and S. Sanchez-Carrillo. 2000. The significance of water inputs to plankton biomass and trophic relationships in a semi-arid freshwater wetland (central Spain). Journal of Plankton Research 22: 2075-2093. https://doi.org/10.1093/plankt/22.11.2075
  3. Brinson, M.M., A.E. Lugo and S. Brown. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecology and Systematics 12: 123-161. https://doi.org/10.1146/annurev.es.12.110181.001011
  4. Campbell, C.E. 2002. Rainfall events and downstream drift of microcrustacean zooplankton in a Newfoundland boreal stream. Canadian Journal of Zoology 80: 997-1003. https://doi.org/10.1139/z02-077
  5. Cattaneo, A., G.G. Galanti, S. Gentinetta and S. Romo. 1998. Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology 39: 725-740. https://doi.org/10.1046/j.1365-2427.1998.00325.x
  6. Cheruvelil, K.S., P.A. Soranno, J.D. Madsen and M.J. Roberson. 2002. Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. Journal of the North American Benthological Society 21: 261-277. https://doi.org/10.2307/1468414
  7. Choi, J.Y., K.S. Jeong and G.J. Joo. 2015. Rainfall as dominant driver of rotifer dynamics in shallow wetlands: Evidence from a long-term data record (Upo Wetalnds, South Korea). International Review of Hydrobiology 100: 21-33. https://doi.org/10.1002/iroh.201401745
  8. Choi, J.Y., K.S. Jeong, G.H. La, H.W. Kim, K.H. Chang and G.J. Joo. 2011. Inter-annual variability of a zooplankton community: the importance of summer concentrated rainfall in a regulated river ecosystem. Journal of Ecology and Environment 34: 49-58.
  9. Choi, J.Y., K.S. Jeong, S.K. Kim, G.H. La, K.H. Chang and G.J. Joo. 2014a. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecological Informatics 24: 177-185. https://doi.org/10.1016/j.ecoinf.2014.09.002
  10. Choi, J.Y., K.S. Jeong, G.H. La, S.K. Kim and G.J. Joo. 2014b. Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands (South Korea). Journal of Limnology 73: 197-202.
  11. Choi, J.Y., S.K. Kim, G.H. La, K.S. Jeong, H.W. Kim, T.K. Kim and G.J. Joo. 2012. Microcrustacean community dynamics in Upo Wetlands: Impact of rainfall and physiochemical factor on microcrustacean community. Korea Journal of Limnology 45: 329-335.
  12. Coulliette, A.D. and R.T. Noble. 2008. Impacts of rainfall on the water quality of the Newport River Estuary (Eastern North Carolina, USA). Journal of Water and Health 6: 473-482. https://doi.org/10.2166/wh.2008.136
  13. Gyllstrom, M., L.A. Hansson, E. Jeppesen, F. Garcia-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijow, M.R. Miracle, M. Nykanen, T. Noges, S. Romo, D. Stephen, E. Van Donk and B. Moss. 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008-2021. https://doi.org/10.4319/lo.2005.50.6.2008
  14. Hamilton, P.B., K. Gajewski, D.E. Atkinson and D.R.S. Lean. 2001. Physical and chemical limnology of 204 lakes from the Canadian Arctic Archipelago. Hydrobiologia 457: 133-148. https://doi.org/10.1023/A:1012275316543
  15. Jeong, K.S., D.K. Kim and G.J. Joo. 2007. Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Research 41: 1269-1279. https://doi.org/10.1016/j.watres.2006.11.054
  16. Jeppesen, E., T.L. Lauridsen, T. Kairesalo and M.R. Perrow. 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes, pp. 91-114. In: The Structuring Role of Submerged Macrophytes in Lakes (Jeppesen, E., M. Sondergaard and K. Christoffersen, eds.). New York. Springer.
  17. Kim, D.K., K.S. Jeong, K.H. Chang, G.H. La, G.J. Joo and H.W. Kim. 2012. Patterning zooplankton communities in accordance with annual climatic conditions in a regulated river system (Nakdong River, South Korea). International Review of Hydrobiology 97: 55-72. https://doi.org/10.1002/iroh.201111428
  18. Kim, S.K., D.G. Hong, M. Kang, K.L. Lee, H.Y. Lee, G.J. Joo and J.Y. Choi. 2015. Zooplankton Community Dynamic in Lentic Freshwater Ecosystems in the Nakdong River Basin. Korea Journal of Environment and Ecology 29: 410-420. https://doi.org/10.13047/KJEE.2015.29.3.410
  19. Kochsiek, K.A., J.L. Wilhm and R. Morrison. 1971. Species diversity of net zooplankton and physiochemical conditions in Keystone Reservoir, Oklahoma. Ecology 52: 1119-1125. https://doi.org/10.2307/1933822
  20. Lauridsen, T.L. and D.M. Lodge. 1996. Avoidance by Daphnia magna of fish and macrophytes: Chemical cues and predator-mediated use of macrophyte habitat. Limnology and Oceanography 41: 794-798. https://doi.org/10.4319/lo.1996.41.4.0794
  21. Lodge, D.M. 2001. Littoral zone structures as Daphnia refugia against fish predators. Limnology and Oceanography 46: 230-237. https://doi.org/10.4319/lo.2001.46.2.0230
  22. Lynch, M. 1979. Predation, competition, and zooplankton community structure: An experimental study. Limnology and Oceanography 24: 253-272. https://doi.org/10.4319/lo.1979.24.2.0253
  23. Manatunge, J., T. Asaeda and T. Priyadarshana. 2000. The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environmental Biology of Fishes 58: 425-438. https://doi.org/10.1023/A:1007691425268
  24. Meerhoff, M., C. Iglesias, F.T. De Mello, J.M. Clemente, E. Jensen, T.L. Lauridsen and E. Jeppesen. 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009-1021. https://doi.org/10.1111/j.1365-2427.2007.01748.x
  25. Mizuno, T. and E. Takahashi. 1991. An Illustrated Guide to Freshwater Zooplankton in Japan. Tokai University Press, Tokyo.
  26. Osore, M.K.W., M.L.M. Tackx and M.H. Daro. 1997. The effect of rainfall and tidal rhythm on the community structure and abundance of the zooplankton of Gazi Bay, Kenya. Hydrobiologia 356: 117-126. https://doi.org/10.1023/A:1003147525611
  27. Quintana, X.D. 2002. Measuring the intensity of disturbance in zooplankton communities of Mediterranean salt marshes using multivariate analysis. Journal of Plankton Research 24: 255-265. https://doi.org/10.1093/plankt/24.3.255
  28. Reynolds, C.S., V. Huszar, C. Kruk, L. Naselli-Flores and S. Melo. 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417-428. https://doi.org/10.1093/plankt/24.5.417
  29. Riisgard, H.U., C.V. Madsen, C. Barth-Jensen and J.E. Purcell. 2012. Population dynamics and zooplankton-predation impact of the indigenous scyphozoan Aurelia aurita and the invasive ctenophore Mnemiopsis leidyi in Limfjorden (Denmark). Aquatic Invasions 7: 147-162. https://doi.org/10.3391/ai.2012.7.2.001
  30. Rosenberry, D.O. and T.C. Winter. 1997. Dynamics of watertable fluctuations in an upland between two prairie-pothole wetlands in North Dakota. Journal of Hydrology 191: 266-289. https://doi.org/10.1016/S0022-1694(96)03050-8
  31. Sakuma, M., T. Hanazato, R. Nakazato and H. Haga. 2002. Methods for quantitative sampling of epiphytic microinvertebrates in lake vegetation. Limnology 3: 115-119. https://doi.org/10.1007/s102010200013
  32. Sass, G.G., C.M. Gille, J.T. Hinke and J.F. Kitchell. 2006. Wholelake influences of littoral structural complexity and prey body morphology on fish predator-prey interactions. Ecology of Freshwater Fish 15: 301-308. https://doi.org/10.1111/j.1600-0633.2006.00158.x
  33. Stansfield, J.H., M.R. Perrow, L.D. Tench, A.J. Jowitt and A.A. Taylor. 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. In Shallow Lakes' 95 (pp. 229-240). Springer Netherlands.
  34. Van Donk, E. and W.J. van de Bund. 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261-274. https://doi.org/10.1016/S0304-3770(01)00205-4
  35. Victor, R. and J.R. Victor. 1997. Some aspects of the ecology of littoral invertebrates in a coastal lagoon of southern Oman. Journal of Arid Environments 37: 33-44. https://doi.org/10.1006/jare.1997.0256
  36. Wetzel, R.G. and G.E. Likens. 2000. Limnological Analyses. Springer-Verlag, New York, pp. 20-70.