DOI QR코드

DOI QR Code

일본잎벌레 (Galerucella nipponensis Laboissiere)의 분포와 먹이원 분석

Distribution and Food Source Analysis of Galerucella nipponensis Laboissiere

  • 최종윤 (국립생태원 생태평가연구실) ;
  • 김성기 (국립환경과학원 낙동강물환경연구소) ;
  • 권용수 (국립생태원 생태평가연구실) ;
  • 김남신 (국립생태원 생태평가연구실)
  • 투고 : 2016.10.28
  • 심사 : 2016.12.26
  • 발행 : 2016.12.31

초록

국내 일본잎벌레의 분포와 생태 특성을 연구하기 위해 낙동강 중하류권에 위치한 38개의 습지 및 하천에서 일본잎벌레와 수생식물, 환경요인에 대한 조사를 수행하였다. 조사 지역 중 총 32개소에서 일본잎벌레의 출현이 확인되었으며, 이들의 분포는 마름의 생물량에 영향받는 것으로 나타났다(t=2.173, $r^2=0.013$, p<0.05). 일본잎벌레의 공간분포뿐만 아니라 계절분포를 연구하기 위해 조사지역 중 개체수가 가장 많은 습지(번개늪)를 선정하여 3년간 추가적인 조사를 수행하였다. 조사 결과, 일본잎벌레는 초봄($15{\sim}17^{\circ}C$, 4월)부터 성장하기 시작하여 여름철(7~8월)에 최대성장에 이르는 것으로 관찰되었다. 알이나 유생 등은 성체와 달리 초봄(4~5월)에만 주로 관찰되었다. 강우량은 일본잎벌레의 계절분포에 강하게 영향을 주는 것으로 나타났으며, 강우가 상대적으로 적은 2015년에 상대적으로 높은 개체수가 관찰되었다. 안정동위원소 분석 결과, 일본잎벌레는 마름의 침수되지 않은 잎을 주 먹이원으로 활용하였으며, 다른 식물은 기여도가 높지 않았다. 그러나 일본잎벌레에 대한 마름의 활용은 마름의 성장이나 마름이 포함된 식생대의 식물 구성에 거의 영향을 미치지 않는 것으로 나타났다. 이는 마름은 일본잎벌레에게 먹이원인 동시에 산란터로서 활용되기 때문에 과도하지 않은 섭식을 통해 산란처를 지속적으로 유지하려고 하는 전략인 것으로 사료된다.

In this study, we explain the environmental variables that mainly influence the spatial and seasonal pattern of Galerucella nipponensis in 38 wetland and stream located at mid-low Nakdong River. G. nipponensis were found at total of 32 wetland, was strongly positively correlated with the biomass of Trapa japonica (t=2.173, $r^2=0.013$, p<0.05). In result of seasonal distribution during 3 years, the largest density of G. nipponensis adult were observed in summer (7~8 months), egg and larva was recorded in only early spring (4~5 months). Rainfall were negatively related with the seasonal distribution of G. nipponensis. They were more abundant in dry season (2015 year) than rainy seasons(2013~2014 year). Stable isotope analysis showed that the G. nipponensis consumed as food source no submerged leaf of T. japonica than other plant. However, utilization of T. japonica on Galerucella nipponensis were not influence to plant biomass and/or species composition in vegetated bed. Those considered as adaptive strategies for sustainable habitat maintenance that because T. japonica use as not only food source but also their lives for G. nipponensis.

키워드

참고문헌

  1. Ahn, S.J. and C.G. Park. 2012. Terrestrial Insect Fauna of the Junam Wetlands Area in Korea. The Korean Society of Applied Entomology 52: 111-129.
  2. Cattaneo, A., G.G. Galanti, S. Gentinetta and S. Romo. 1998. Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology 39: 725-740. https://doi.org/10.1046/j.1365-2427.1998.00325.x
  3. Cheruvelil, K.S., P.A. Soranno, J.D. Madsen and M.J. Roberson. 2002. Plant architecture and epiphytic macroinvertebrate communities: the role of an exotic dissected macrophyte. Journal of the North American Benthological Society 21: 261-277. https://doi.org/10.2307/1468414
  4. Choi, J.Y., K.S. Jeong and G.J. Joo. 2015. Rainfall as dominant driver of rotifer dynamics in shallow wetlands: Evidence from a long-term data record (Upo Wetalnds, South Korea). International Review of Hydrobiology 100: 21-33. https://doi.org/10.1002/iroh.201401745
  5. Choi, J.Y., K.S. Jeong, G.H. La, H.W. Kim, K.H. Chang and G.J. Joo. 2011. Inter-annual variability of a zooplankton community: the importance of summer concentrated rainfall in a regulated river ecosystem, Journal of Ecology and Environment 34: 49-58.
  6. Choi, J.Y., K.S. Jeong, G.H. La, S.K. Kim and G.J. Joo. 2014. Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands (South Korea). Journal of Limnology 73: 197-202.
  7. De Iongh, H.H., W. Kiswara, W. Kustiawan and P.E. Loth. 2007. A review of research on the interactions between dugongs (Dugong dugon Muller 1776) and intertidal seagrass beds in Indonesia. Hydrobiologia 591: 73-83. https://doi.org/10.1007/s10750-007-0785-4
  8. Gillespie, D.R. and R.R. McGregor 2000. The functions of plant feeding in the omnivorous predator Dicyphus hesperus: water places limits on predation. Ecological Entomology 25: 380-386. https://doi.org/10.1046/j.1365-2311.2000.00285.x
  9. Griffiths, D. 1975. Prey availability and the food of predators. Ecology 56: 1209-1214. https://doi.org/10.2307/1936161
  10. Hoque, A., S.M. Rahman, S. Arima and Y. Takagi. 2001. Efficient in vitro germination and shoot proliferation of chilling-treated water chestnut (Trapa japonica Flerov) embryonal explants. In Vitro Cellular & Developmental Biology-Plant 37: 369-374. https://doi.org/10.1007/s11627-001-0065-3
  11. Ikeda, K. and F. Nakasuji. 2002. Spatial structure-mediated indirect effects of an aquatic plant, Trapa japonica, on interaction between a leaf beetle, Galerucella nipponensis, and a water strider, Gerris nepalensis. Population Ecology 44: 41-47. https://doi.org/10.1007/s101440200005
  12. Jeppesen, E., T.L. Lauridsen, T. Kairesalo and M.R. Perrow. 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes, pp. 91-114. In The Structuring Role of Submerged Macrophytes in Lakes (Jeppesen, E., M. Sondergaard and K. Christoffersen, eds.), New York. Springer.
  13. Kirsch, K.D., J.F. Valentine and K.L. Heck Jr. (2002). Parrotfish grazing on turtlegrass Thalassia testudinum: evidence for the importance of seagrass consumption in food web dynamics of the Florida Keys National Marine Sanctuary. Marine Ecology Progress Series 227: 71-85. https://doi.org/10.3354/meps227071
  14. Lake, M.D., B.J. Hicks, R.D.S. Wells and T.M. Dugdale. 2002. Consumption of submerged aquatic macrophytes by rudd (Scardinius erythrophthalmus L.) in New Zealand. Hydrobiologia 470: 13-22. https://doi.org/10.1023/A:1015689432289
  15. Lee, J.Y., T. Yoshioks and T. Hanazoto. 2002. Faunal trophic interaction in an oligotrophic-dystrophic lake (Shirakoma-like, Japan). Limnology 3: 151-158. https://doi.org/10.1007/s102010200018
  16. Lodge, D.M. 2001. Littoral zone structures as Daphnia refugia against fish predators. Limnology and Oceanography 46: 230-237. https://doi.org/10.4319/lo.2001.46.2.0230
  17. Manatunge, J., T. Asaeda and T. Priyadarshana. 2000. The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environmental Biology of Fishes 58: 425-438. https://doi.org/10.1023/A:1007691425268
  18. Meerhoff, M., C. Iglesias, F.T. De Mello, J.M. Clemente, E. Jensen, T.L. Lauridsen and E. Jeppesen. 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009-1021. https://doi.org/10.1111/j.1365-2427.2007.01748.x
  19. Park, S.J., Y.H. Cho, Y.J. Kim, Y.G. Han, H.M. Lim, S.K. Park and E.J. Hong. 2010. Insect Fauna of Is. Boleum-do (Prov. Gyeonggi-do), Korea. Journal of Asia-Pacific Biodiversity 3: 15-24.
  20. Son, M.W. and Y.G. Jeon. 2003. Physical geographical characteristics of natural wetlands on the downstream reach of Nakdong River. Journal of The Korean Association of Regional Geographers 9: 66-76.
  21. Tanaka, M. and F. Nakasuji. 2002. Dynamic interaction between a leaf beetle, Galerucella nipponensis, and an aquatic plant, Trapa japonica. II. Dispersal behavior of larvae. Population Ecology 44: 1-6. https://doi.org/10.1007/s101440200000
  22. Wetzel R.G. and G.E. Likens. 2000. Limnological Analyses. Springer-Verlag, New York, pp. 20-70.