DOI QR코드

DOI QR Code

Turbulence-induced noise of a submerged cylinder using a permeable FW-H method

  • Choi, Woen-Sug (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Choi, Yoseb (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University) ;
  • Kwon, Hyun-Wung (Department of Naval Architecture and Ocean Engineering, Koje College) ;
  • Jung, Chul-Min (The 6th R&D Institute-3rd Directorate, Agency for Defense Development)
  • Received : 2015.10.28
  • Accepted : 2016.03.08
  • Published : 2016.05.31

Abstract

Among underwater noise sources around submerged bodies, turbulence-induced noise has not been well investigated because of the difficulty of predicting it. In computational aeroacoustics, a number of studies has been conducted using the Ffowcs Williamse-Hawkings (FW-H) acoustic analogy without consideration of quadrupole source term due to the unacceptable calculation cost. In this paper, turbulence-induced noise is predicted, including that due to quadrupole sources, using a large eddy simulation (LES) turbulence model and a developed formulation of permeable FW-H method with an open source computational fluid dynamics (CFD) tool-kit. Noise around a circular cylinder is examined and the results of using the acoustic analogy method with and without quadrupole noise are compared, i.e. the FW-H method without quadrupole noise versus the permeable FW-H method that includes quadrupole sources. The usability of the permeable FW-H method for the prediction of turbulence-noise around submerged bodies is shown.

Keywords

References

  1. Ansys, 2009. Ansys Fluent 12.0 Theory Guide Chapter 14. Aerodynamically Generated Noise, pp. 421-432.
  2. Batten, P., Spalart, P., Terracol, M., 2007. Use of hybrid RANS/LES for acoustic source predictions. In: Large-eddy Simulation for Acoustics. Cambridge Aerospace Series. Cambridge University Press.
  3. Blevins, R.D., 1990. Flow-induced Vibration, second ed. Van Nostrand Reinhold.
  4. Boudet, J., Casalino, D., Jacob, M.C., Ferrand, P., 2003. Prediction of Sound Radiated by a Rod Using Large Eddy Simulation. AIAA, pp. 2003-3217.
  5. Brentner, K.S., 1996. An Efficient and Robust Method for Predicting Helicopter Rotor High-speed Impulsive Noise. AIAA, pp. 96-0151.
  6. Brentner, K.S., Holland, P.C., 1997. An efficient and robust method for computing quadrupole noise. J. Am. Helicopter Soc. 42, 172-181. https://doi.org/10.4050/JAHS.42.172
  7. Cantwell, B., Coles, D., 1983. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321-374. https://doi.org/10.1017/S0022112083002189
  8. Choi, W., Hong, S., Song, J., Kwon, H., Jung, C., Kim, T., 2015. Turbulentinduced noise around a circular cylinder using permeable FW-H method. J. Appl. Math. Phys. 3, 161-165. https://doi.org/10.4236/jamp.2015.32025
  9. Curle, N., 1955. The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A 231 (1187), 505-514.
  10. Farassat, F., 1987. Quadrupole Source in Prediction of Noise of Rotating Blades-A New Source Description. AIAA Paper 87-2675.
  11. Farassat, F., 2007. Derivation of Formulations 1 and 1A of Farassat. NASA/TM-2007-214853. NASA.
  12. Farassat, F., Brentner, K.S., 1988. The uses and abuses of the acoustic analogy in helicopter rotor noise prediction. J. Am. Helicopter Soc. 33, 29-36. https://doi.org/10.4050/JAHS.33.29
  13. Farassat, F., Brentner, K.S., 1998. Supersonic quadrupole noise theory for high-speed helicopter rotors. J. Sound Vib. 218 (3), 481-500. https://doi.org/10.1006/jsvi.1998.1836
  14. Ffowcs Williams, J.E., Hawkings, D.L., 1969. Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. Lond. A 264 (1151), 321-342. https://doi.org/10.1098/rsta.1969.0031
  15. Di Francescantonio, D., 1997. A new boundary integral formulation for the prediction of sound radiation. J. Sound Vib. 202 (4), 491-509. https://doi.org/10.1006/jsvi.1996.0843
  16. Hanson, D.B., Fink, M.R., 1979. The importance of quadrupole sources in prediction of transonic tip speed propeller noise. J. Sound Vib. 62, 19-38. https://doi.org/10.1016/0022-460X(79)90554-6
  17. Hong, H.B., Choi, J.S., 1998. Experimental study on the vortex-shedding sound from a yawed circular cylinder. J. Acoust. Soc. Am. 103 (5), 1937-1938.
  18. Ianniello, S., 1998. Quadrupole Noise Predictions through the FW-H Equation. AIAA 98-2377.
  19. Ianniello, S., Muscari, R., Di mascio, A., 2014a. Ship underwater noise assessment by the acoustic analogy, part I: nonlinear analysis of a marine propeller in a uniform flow. J. Mar. Sci. Technol. 18, 547-570.
  20. Ianniello, S., Muscari, R., Di mascio, A., 2014b. Ship underwater noise assessment by the acoustic analogy, part II: hydroacoustic analysis of a ship scaled model. J. Mar. Sci. Technol. 19, 52-74. https://doi.org/10.1007/s00773-013-0236-z
  21. Ianniello, S., Muscari, R., Di mascio, A., 2014c. Ship underwater noise assessment by the acoustic analogy, part III: measurements versus numerical predictions on a full-scale ship. J. Mar. Sci. Technol. 19, 125-142.
  22. Inoue, O., Hatakeyama, N., 2002. Sound generation by a two-dimensional circular cylinder in a uniform flow. J. Fluid Mech. 471, 285-314.
  23. Jasak, H., 2009. OpenFOAM: open source CFD in research and industry. Int. J. Nav. Archit. Ocean Eng. 1, 89-94.
  24. Kato, C., Yamade, Y., Wang, H., Guo, Y., Miyazawa, M., Takaishi, T., Yoshimura, S., Takano, Y., 2007. Numerical prediction of sound generated from flows with a low Mach number. Comput. Fluids Chall. Adv. Flow Simul. Model. 36, 53-68.
  25. Lighthill, M.J., 1952. On sound generated aerodynamically, I: general theory. Proc. R. Soc. A221, 564-587.
  26. Lockard, D.P., Casper, J.H., 2005. Permeable Surface Corrections for Ffowcs Williams and Hawkings Integrals. AIAA, 2005-2995.
  27. Norberg, C., 2003. Fluctuating lift on a circular cylinder: review and new measurement. J. Fluids Struct. 17 (1), 57-96. https://doi.org/10.1016/S0889-9746(02)00099-3
  28. Orselli, R.M., Meneghini, J.R., Saltra, F., 2009. Two and Three-dimensional Simulation of Sound Generated by Flow Around a Circular Cylinder. American Institute of Aeronautics and Astronautics, AIAA, pp. 2009-3270.
  29. Park, I.C., 2012. 2-Dimensional Simulation of Flow-induced Noise Around Circular Cylinder. Theses and Dissertations. Chungnam University.
  30. Pope, S.B., 2000. Turbulent Flows. Cambridge University Press.
  31. Sagaut, P., 2006. Large Eddy Simulation for Incompressible Flows: an Introduction. Springer Science & Business Media.
  32. Singer, B.A., Lockard, D.P., 2002. Hybrid acoustic predictions. Comput. Math. Appl. 46, 647-669.
  33. Takaishi, T., Miyazawa, M., Kato, C., 2007. A computational method of evaluating noncompact sound based on vortex sound theory. J. Acoust. Soc. Am. 121, 1353-1361. https://doi.org/10.1121/1.2431345
  34. Wang, M., Freund, J.B., Lele, S.K., 2006. Computational prediction of flowgenerated sound. Annu. Rev. Fluid Mech. 38, 483-512. https://doi.org/10.1146/annurev.fluid.38.050304.092036
  35. Weller, H.G., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620-631. https://doi.org/10.1063/1.168744
  36. Zhang, H., Yang, J., Xiao, L., Lu, H., 2015. Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re = 3900. J. Hydrodyn. Ser. B 27, 195-203. https://doi.org/10.1016/S1001-6058(15)60472-3

Cited by

  1. Development of formulation Q1As method for quadrupole noise prediction around a submerged cylinder vol.9, pp.5, 2016, https://doi.org/10.1016/j.ijnaoe.2017.02.002
  2. 파워흐름해석법을 이용한 평판의 난류경계층소음해석 vol.27, pp.5, 2016, https://doi.org/10.5050/ksnve.2017.27.5.608
  3. A numerical study of transient flow around a cylinder and aerodynamic sound radiation vol.25, pp.3, 2018, https://doi.org/10.1134/s0869864318030022
  4. 파랑관통형 선형의 선체유기 유동소음특성에 관한 연구 vol.24, pp.5, 2016, https://doi.org/10.7837/kosomes.2018.24.5.619
  5. 잠수함 형상의 유동소음 해석기법 연구 vol.24, pp.7, 2016, https://doi.org/10.7837/kosomes.2018.24.7.930
  6. 벽면변동압력을 이용한 비공동 수중익의 광대역소음 예측 연구 vol.25, pp.6, 2016, https://doi.org/10.7837/kosomes.2019.25.6.765
  7. Estimation of turbulent boundary layer induced noise using energy flow analysis for ship hull designs vol.234, pp.1, 2016, https://doi.org/10.1177/1475090219852195
  8. Small-Scale Rotor Design Variables and Their Effects on Aerodynamic and Aeroacoustic Performance of a Hovering Rotor vol.142, pp.8, 2016, https://doi.org/10.1115/1.4046872
  9. Experimental and Numerical Analysis on Noise Characteristics of Parallel Multiple Jets Obliquely Impinging on a Flat Surface in the Steel Slab Scarfing vol.91, pp.10, 2016, https://doi.org/10.1002/srin.202000125
  10. Integrated analysis of flow-induced noise from submarine under snorkel condition vol.234, pp.4, 2020, https://doi.org/10.1177/1475090220916594
  11. Time domain broadband noise predictions for non-cavitating marine propellers with wall pressure spectrum models vol.13, pp.None, 2021, https://doi.org/10.1016/j.ijnaoe.2021.01.004
  12. Numerical investigation of geometrical parameters on the hydrodynamic noise characteristics of submerged bodies and comparisons with experiments vol.235, pp.4, 2021, https://doi.org/10.1177/1475090220962246