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Abstract

A spar-type floating substructure that is being widely used for offshore wind power generation is vulnerable to resonance in the heave
direction because of its small water plane area. For this reason, the stable dynamic response of this floating structure should be ensured by
accurately identifying the resonance characteristics. The purpose of this study is to analyze the characteristics of the combination resonance
between the excitation frequency of a regular wave and natural frequencies of the floating substructure. First, the nonlinear equations of motion
with two degrees of freedom are derived by assuming that the floating substructure is a rigid body, where the heaving motion and pitching
motions are coupled. Moreover, to identify the characteristics of the combination resonance, the nonlinear term in the nonlinear equations is
approximated up to the second order using the Taylor series expansion. Furthermore, the validity of the approximate model is confirmed through
a comparison with the results of a numerical analysis which is made by applying the commercial software ANSYS AQWA to the full model. The
result indicates that the combination resonance occurs at the frequencies of u±un5 and 2un5 between the excitation frequency (u) of a regular
wave and the natural frequency of the pitching motion (un5) of the floating substructure.
Copyright © 2016 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Spar-type floating substructures are being implemented in
various fields of deep water ocean engineering such as oil field
development, floating-type wind-turbines, and deep-sea dril-
ling rigs. Among the floating substructures that should main-
tain a stable position in a marine environment to properly
perform their functions, spar-type floating structures are
especially vulnerable shape-wise to the excitation of a long
wave. To solve these problems so that the structure can
maintain a stable position, the dynamic response characteris-
tics of the floating substructure in the marine environment
should be analyzed. These characteristics can be used to

estimate singular resonance points that can be used to design
the floating substructure. A hydrodynamic numerical analysis
method is frequently used to estimate such dynamic response
characteristics. Jonkman (2010) wrote a technical report on the
characteristics of the floating system and Browning et al.
(2014) analyzed the dynamic characteristics of the floating
system by using FAST software and verified through testing.

A spar-type floating substructure, whose water plane is
much smaller than the submerged volume, is easier to move
vertically than horizontally. This motion affects the charac-
teristics of the restoring moment. Such a change in the
restoring moment in the horizontal direction generates a time
delay in the vertical motion and then a phase shift. The sta-
bility of the floating substructure's motion in this environment
should be verified based on the Mathieu-type stability (Haslum
and Faltinsen, 1999). Rho et al. (2002, 2003, 2004) found that
a combination resonance is generated when the heave natural
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frequency becomes twice that of the pitch natural frequency
and the excitation frequency is close to the heave natural
frequency, because of the unstable coupled motions in the
heave and pitch directions of the floating substructure. Hong
et al. (2005) conducted a test involving regular wave excita-
tion at different frequencies by manufacturing a floating sub-
structure test model and verified that when the excitation
frequency was close to the heave natural frequency or a value
twice that of the pitch natural frequency, combination reso-
nance occurs due to an unstable pitch motion. Moreover,
through a nonlinear coupled analysis of the motions in the
heave and pitch directions, Zhao et al. (2010) confirmed that
when the excitation frequency is close to the sum of the heave
and pitch natural frequencies, the floating substructure be-
comes unstable at a certain wave height or higher, thereby
generating three times heave and pitch modes. Jung et al.
(2013) simulated numerically models the interaction between
a regular wave and the roll motion of a rectangular floating
structure. Kim et al. (2014) introduced an in-house program to
predict the linear and nonlinear ship motion and structural
loads of a ship under the waves.

In this study, a floating substructure model is simulated to
determine whether resonance is generated, not only at the
frequencies that generate combination resonances, as verified
in previous studies, but also at the addition and subtraction
between the excitation frequencies of a regular wave and the
pitch natural frequency. In addition, the causes of such com-
bination resonances are analyzed. To analyze the motion of the
floating substructure, the followings are assumed: 1) the
floating substructure is a two-degree-of-freedom rigid body
capable of moving in the heave and pitch directions; 2) the
sum of the surface pressure of the floating substructure serves
as a force and moment at the Center of Gravity (COG) and
metacenter of the floating substructure; 3) the displacement,
velocity, and acceleration values at the COG are reflected in

the results for all the motions of the floating substructure.
Based on these assumptions, the nonlinear equations of motion
for a floating substructure with a two-degree-of-freedom sys-
tem are derived, and an approximate model is generated for
numerically analyzing a case with a very small pitch
displacement. In addition, the response in each direction is
calculated through a numerical analysis utilizing MATLAB,
and to analyze the characteristics of these responses, the
characteristics of their frequencies are examined through the
linear equations with a two-degree-of-freedom system.
Finally, the result of an approximated MATLAB numerical
analysis model is verified by analyzing the same model using
the commercial software ANSYS AQWA Release 14.5 (2013).

2. Approximate model

In this study, the equations of motion are derived to
calculate the response of the floating substructure generated by
the excitation of a regular wave by assuming that the floating
substructure is a two-degree-of-freedom model in the heave
and pitch directions.

2.1. Equations of motion

Regarding the excitation force in a static equilibrium state,
the surface pressure by a wave at the COG of the floating
substructure, which is integrated in all directions, serves as the
force. In terms of the amplitude, a motion in the heave di-
rection is excited by vertical load fzcosut, and a motion in the
pitch direction is excited by a moment generated by fxcosut.
The components of the motion of the floating substructure in
all directions are depicted in Fig. 1.

Where MC is the metacenter position, GMq the metacentric
height, G the COG in a motion, B the COB in a motion, G0 the
initial COG (center of gravity), and B0 the initial COB (center

Fig. 1. Free Body Diagram of heave and pitch motion of the spar type platform.
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of buoyancy), fz is the magnitude of wave force in heave di-
rection, fx is the magnitude of wave force in surge direction,
respectively. In addition, Deq indicates the draft, z(t) the heave
displacement, q(t) the pitch angle, Aw the water plane area,
Dz(t) the heave displacement under the influence of pitch
angle, and V the displacement volume defined by Aw � Deq.

Letting k and kq be the hydrostatic stiffness in the heave
and pitch directions, the equations of motion of an undamped
system in the heave and pitch directions are expressed by

m€zðtÞ þ k$zðtÞ ¼ fz$cosðutÞ ð1Þ

I€qðtÞ þ kq$qðtÞ ¼M$cosðutÞ
with M ¼ GMq$fx.

Moreover, k and kq can be represented by a function of the
density of water r, the acceleration of gravity g, the water
plane area Aw, the displacement volume V and the metacentric
height GMq,

k ¼ rgAw ð2Þ

kq ¼ rgV$GMq

The relationship between heave displacement z(t) and heave
displacement zG(t) at the COG can be derived using a geo-
metric shape for the floating substructure, as shown in Eq. (3).

zðtÞ ¼ zGðtÞ � 2$GMq$sin
2

�
qðtÞ
2

�
ð3Þ

The length (BG) from the COG to the center of buoyancy
can be obtained and represented by a function of the length
(B0G0) and heave displacement in an equilibrium state, as
shown in Eq. (4).

BG¼ OG�OB¼
�
OG0 þ zðtÞ

�
� 1

2

�
Deq þ zðtÞ�

¼ OG0 � 1

2
Deq þ 1

2
zðtÞ ¼ B0G0 þ 1

2
zðtÞ ð4Þ

Furthermore, the distance (GMq) from the center of rotation
(MC) to the COG (G) is shown in Eq. (5), where Iw is the area
moment of inertia of the floating substructure.

GMq ¼ Iw
V

�
1þ 1

2
tan2 q

�
�B0G0 ð5Þ

To simplify the equation of motion, it can be approximated
by considering the second-order term of small-displacement
q(t) and applying the approximate equation shown in Eq. (6).

sin2 qzq2; 1þ 1

2
tan2 qz1þ 1

2
q2;

1

1� zðtÞz1þ zðtÞ þ z2ðtÞ

ð6Þ
By applying the approximate equation to Eqs. (3)e(5), the

heave displacement z(t) and the metacentric height (GMq) can
be obtained, as shown in Eqs. (7) and (8).

zðtÞ ¼ zGðtÞ � 2$GMq$sin
2q

2
¼ zGðtÞ � 2$GMq$

q2

4

¼ zGðtÞ þ
�
B0G0 � Iw

AwDeq

�
$
q2

2
ð7Þ

GMq ¼ Iw

Aw

�
Deq � zðtÞ�

�
1þ q2

2

�
�B0G0

¼ Iw
AwDeq

 
1þ 1

Deq

zðtÞ þ 1

D2
eq

z2ðtÞ
!�

1þ q2

2

�
�B0G0

ð8Þ
By substituting the approximated equations (Eqs. (7) and

(8)) into the equation of motion (Eq. (1)), it is possible to
derive the approximated equations of motion of the floating
substructure, which is assumed to be a rigid body with a two-
degree-of-freedom system, as shown in Eqs. (9) and (10).

m€zGðtÞ þ k$zGðtÞ þ
�
B0G0 � Iw

AwDeq

�
$k$

q2

2
¼ fz$cosðutÞ ð9Þ

I€qðtÞ þDeq$

�
Iw

AwDeq

�B0G0

�
$k$qðtÞ þB0G0$k$zGðtÞ$qðtÞ

¼M$cosðutÞ
ð10Þ

The detailed derivation of these two equations is given in
Appendix, and these two coupled equations can be represented
in the form of a matrix equation, as shown in Eq. (11).

�
m 0
0 I

	

€zGðtÞ
€qðtÞ

�
þ k$

2
64 1 �b$

qðtÞ
2

B0G0 b$Deq

3
75
 zGðtÞ

qðtÞ
�

¼



fz$cosðutÞ
M$cosðutÞ

�
ð11Þ

Eq. (11) is a nonlinear equation for the two-degree-of-

freedom system, where b ¼
 

Iw
ðAw$DeqÞ � B0G0

!
and the

overall off-diagonal elements of a stiffness matrix are repre-
sented as a function q(t) of the pitch displacement.

2.2. Numerical analysis

The input parameters of the model selected for the nu-
merical analysis are listed in Table 1. The model has

Table 1

Input parameters for numerical analysis.

rw ½kg=m3� 1025 I [kg m2] 5.7553 � 108

R [m] 1 GMqeq ½m� 10.3555

Aw [m2] 3.1416 kq½N$m=
�� 3.2448 � 107

m [kg] 3.1974 � 105 fz [N] 1.0 � 105

u [Hz] 0.15 M [N m] 1.0 � 107

OG0 ½m� 60 Deq [m] 99.2941

kheave ½N=m� 3.1557 � 104
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resonance frequencies in the heave and pitch directions of 0.05
[Hz] and 0.038 [Hz], respectively, based on the test data of the
DeepCwind 1=50th scale model. The natural frequencies in all
directions have the condition of q(t) ¼ 0 in the equilibrium
state. The parameters listed in Table 1 include the following:
the density of water (rw), the radius of the floating substruc-
ture (R), water plane area (Aw), mass (m), the hydrostatic
stiffness in the heave direction (kheave), the draft in the equi-
librium state (Deq), the distance from the sea surface to the
COG (OG0), the excitation frequency (u), the mass moment of
inertia (I), the metacentric height in the equilibrium state
(GMqeq), the hydrostatic stiffness in the pitch direction (kq),
the amplitude of the heave excitation force (fz), and the
amplitude of the pitch excitation moment (M).

To obtain a solution of nonlinear Eq. (11) for the two-
degree-of-freedom system, a numerical analysis was per-
formed by applying the fourth-order RungeeKutta method in
MATLAB. The time responses in all directions for the nu-
merical analysis model indicated in Table 1 are shown in
Fig. 2.

To analyze the frequencies that generate combination
resonance due to the coupling between the natural fre-
quencies in all directions and the excitation frequency, the
Fourier transforms of time responses are represented in
Fig. 3(a), where “ ” refers to the amplitude of the heave
displacement, and “ ” refers to the amplitude of each pitch
displacement. The Fast Fourier Transform (FFT) results
indicate that the resonance in the heave direction occurs at a
natural frequency of 0.05 [Hz] (¼un3), frequencies of 0.15
[Hz] (¼u) and 0.3 [Hz] (¼2�u), which are the 1� and 2�
components of the excitation frequencies, respectively, and

frequencies of 0.076 [Hz] (¼2�un5), 0.112 [Hz]
(¼u � un5), and 0.188 [Hz] (¼u þ un5). The resonance in
the pitch direction occurs at a natural frequency of 0.038
[Hz] (¼un5) and excitation frequency of 0.15 [Hz] (¼u).
The results of analyzing the frequencies at which resonance
was generated other than the natural frequency and excitation
frequency in all directions among the frequencies of reso-
nance indicate that 0.076 [Hz] was double the natural pitch
frequency, and 0.112 [Hz] and 0.188 [Hz] are related to the
addition and subtraction between the natural pitch frequency
and excitation frequency.

To determine whether the same result is produced even
when the excitation frequency is adjusted, a numerical anal-
ysis was performed on the same model by adjusting the
excitation frequency to 0.1 [Hz] (¼u), and the analytic result
is shown in Fig. 3(b). The FFT result verifies that resonance is
generated in the heave direction at a natural frequency of 0.05
[Hz] (¼un3), frequencies of 0.1 [Hz] (¼u) and 0.2 [Hz]
(¼2 � u), which are the 1� and 2� components of the
excitation frequencies, respectively, and frequencies of 0.062
[Hz] (¼u � un5), 0.076 [Hz] (¼2 � un5), and 0.138 [Hz]
(¼u þ un5). Resonances are generated in the pitch direction at
the natural frequency of 0.038 [Hz] (¼un5) and excitation
frequency of 0.1 [Hz] (¼u).

The results of analyzing the frequencies at which resonance
is generated other than the natural frequency and excitation
frequency in all directions among the frequencies of resonance
indicate that 0.076 [Hz] is double the natural pitch frequency,
and 0.062 [Hz] and 0.138 [Hz] are related to the addition and
subtraction between the natural pitch frequency and excitation
frequency.

Fig. 2. Numerical results of time response of heave and pitch motion.
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3. Characteristics of the combination resonance

The fact that resonance is also generated at the frequency
of addition and subtraction between the excitation frequency
and the pitch natural frequency, and a frequency that is
double the pitch natural frequency, in addition to the natural
frequency and excitation frequency, due to the geometric
shape of the floating substructure, is verified by the analysis
results for two numerical analysis models with different
excitation frequencies.

In this section, the floating substructure is assumed to be an
undamped linear system of small-vibration with a two-degree-
of-freedom system to analyze the frequencies that can lead to
combination resonance. The frequencies that generate com-
bination resonance are identified by performing a frequency
analysis of the solution obtained using this model.

3.1. Two-degree-of-freedom approximate model

Eqs. (12) and (13) are the equations of motion for the
forced vibration of the undamped system, where the natural
frequencies in the heave and pitch directions in the static
equilibrium state are un3 and un5, respectively; the normal
force in the heave direction is F0$cosut; and the moment in
the pitch direction is M0$cosut.

€zðtÞ þu2
n3zðtÞ ¼ F$cosðutÞ ð12Þ

€qðtÞ þu2
n5qðtÞ ¼M$cosðutÞ ð13Þ

Where F ¼ F0=m and M ¼ M0=I represent the normalized
force and moment respectively, while m is mass and I is the
mass moment of inertia.

If the equations of motion for all directions have the initial
conditions of zð0Þ ¼ qð0Þ ¼ 0 and _zð0Þ ¼ _qð0Þ ¼ 0, a general
solution for the responses in all directions can be represented
as shown in Eqs. (14) and (15).

zðtÞ ¼ AcosðutÞ �Acosðun3tÞ ð14Þ

qðtÞ ¼ BcosðutÞ �Bcosðun5tÞ ð15Þ
Where

A¼ F

u2
n3 �u2

; B¼ M

u2
n5 �u2

Moreover, the displacement Dz(t) in the heave direction,
which is generated by the rotational displacement q(t) in the
pitch direction due to the geometric shape of the floating
substructure, can be represented by a function of the distance
(L) from the metacenter (MC) to the COG and the pitch
displacement q(t), as shown in Eq. (16).

DzðtÞ ¼ 2� L� sin
qðtÞ
2

� sin
qðtÞ
2

ð16Þ

The displacement (zG(t)) in the heave direction from the COG
is calculated based on the difference between the displacement
z(t) in the heave direction and the displacement Dz(t) in the
heave direction generated by q(t), as shown in Eq. (17).

zGðtÞ ¼ zðtÞ �DzðtÞ ð17Þ

The displacement in the heave direction from the COG of
the floating substructure can be obtained by substituting Eqs.
(13) and (14) into Eq. (16), as shown in Eq. (18).

zGðtÞ ¼ AcosðutÞ �Acosðun3tÞ

� 2$L$

�
sin

�
B cosðutÞ �B cosðun5tÞ

2

�	2
ð18Þ

Where L is the metacentric height, u the wave frequency, un3

and un5 the heave and pitch resonance frequencies in static
equilibrium.

In addition, Eq. (19) shows a generalized Taylor series
expansion, where f ¼ sin2q in relation to small-displacement q.

Fig. 3. Fourier Transform of time response of heave and pitch motion: (a) Wave frequency: 0.15 [Hz] (b) Wave frequency: 0.1 [Hz].
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f ¼
X∞
n¼1

ð�4Þn�1$
f ð2Þð0Þ
2n!

$q2n ð19Þ

By applying Eqs. (18) and (19), the displacement zG(t) in
the heave direction at the COG for small-displacement q can
be generalized as shown in Eq. (20).

zGðtÞ ¼ AcosðutÞ �Acosðun3tÞ � 2$L$

"X∞
n¼1

ð�4Þn�1$
1

n!
$q2n

#

ð20Þ
Where

q¼ BcosðutÞ �Bcosðun5tÞ
2

An approximate solution considering the second-order term
(n ¼ 1) can be derived by using the Taylor series expansion in
linear Eq. (18), as shown in Eq. (21), and represented by the
addition and subtraction of cosine functions, as shown in Eq.
(22).

zGðtÞ ¼ AcosðutÞ �Acosðun3tÞ

� 2L

��
B cosðutÞ �B cosðun5tÞ

2

�	2
ð21Þ

zGðtÞ ¼ Acosut�Acosun3t�B2L

4
cosð2uÞt

þB2L

2
cosðu±un5Þt�B2L

4
cosð2un5Þt�B2L

2
ð22Þ

The result of Eq. (22) indicates that displacement
zG(t) in the heave direction from the COG consists of a
combination of cosine functions with frequencies of
u; un3; 2u; 2un5; and u±un5. This means that combi-
nation resonance can occur at the frequencies of
2un5 and u±un5, in addition to the excitation frequency u
and heave natural frequency un3, which shows the same
pattern for the frequency characteristics as that shown in the
results of the nonlinear numerical analysis in Section 2.

3.2. Error analysis of the approximate solution by
approximate model

In Section 3.1, the frequencies that lead to combination
resonance were identified based on the Taylor series expansion
up to the second-order term (n ¼ 1). This section identifies the
frequencies that generate combination resonance when high-
order terms in the Taylor series expansion are included or
the error in the approximate solution is reduced. In addition,
by comparing the approximate solution and a correct solution
through a numerical analysis, the error due to the application
of the approximate solution is analyzed. To reduce the error
from the application of the Taylor expansion approximate
solution, an approximate equation that includes the terms up to
the fourth order (n ¼ 2) is obtained, as shown in Eq. (23).

zGðtÞ ¼ AcosðutÞ �Acosðun3tÞ

� 2L

"�
B cosðutÞ �B cosðun5tÞ

2

�2

� 1

3

�
B cosðutÞ �B cosðun5tÞ

2

�4
#

ð23Þ

When Eq. (23) is split by the addition and subtraction of the
cosine function, it is as shown in Eq. (24).

zGðtÞ ¼ AcosðutÞ �Acosðun3tÞ þB4L

192
cosð4utÞ

þB4L

192
cosð4un5tÞ þB2LðB2 � 3Þ

12
cosð2utÞ

þB2LðB2 � 3Þ
12

cosð2un5tÞ �B4L

48
cosðu±3un5Þt

�B4L

48
cosð3u±un5ÞtþB4L

32
cosð2u±2un5Þt

�B2LðB2 � 4Þ
8

cosðu±un5Þtþ 3B2LðB2 � 8Þ
32

ð24Þ
Eq. (24) confirms that when an approximate solution that

includes the high-order terms (n ¼ 2) is applied, the combi-
nation resonance is also generated by frequencies
2ðu±un5 Þ; u±3un5, 4u, 4un5; and 3u±un5 in addition to
the frequencies that lead to combination resonance using an
approximate solution with the terms up to the second order
(n ¼ 1).

To analyze the effects of the Taylor expansion error, the
correct solution of a simple numerical analysis model, the
approximate solution including the terms up to the second
order, and the approximate solution including the terms up to
the fourth order are compared. The input parameters applied
for the numerical analysis model are listed in Table 2.

Fig. 4 shows the time responses in the pitch direction when
the parameters listed in Table 2 are applied.

Fig. 5 indicates that when q(t) is very small, as shown in
Fig. 4, the same numerical analysis results are obtained
regardless of the approximation. However, as shown in Fig. 7,
when q(t) becomes greater by applying the parameters of Table
3, only the peaks of u±un5 [Hz] are found as a result of the
removal of the high-order terms in the approximate equation
using the terms up to the second order compared to the exact
solution, but the other peaks are absent at the other frequencies.
It seems that this result is obtained because the error of the
approximate solution is affected by an increase in q(t).

The input parameters when q(t) does not have a small value
are listed in Table 3, and the time responses in the pitch di-
rection are shown in Fig. 6.

To decrease the error of the approximate solution, the result
of Eq. (23), which was approximated by developing the Taylor

Table 2

Input parameters for numerical analysis with small q(t).

u [rad/s] un3 [rad/s] un5 [rad/s] F [N/kg] M [N/kg m] L [m]

0.5 � 2p 0.03 � 2p 0.04 � 2p 1.0 0.001 10
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series expansion up to the fourth order term (n ¼ 2), was
compared with the exact solution. As a result, it is found that
when the fourth order term (n ¼ 2) is included, resonance is
generated at a frequency similar to that of the exact solution as
a result of a decrease in the error, as shown in Fig. 7.

Thus, the fact that combination resonance can occur not
only at the natural frequency and excitation frequency, but also
at the frequencies of 2ðu±un5 Þ; u±3un5; 4u; 4un5;
and 3u±un5; as a result of the geometric shape of the floating
substructure during excitation by a regular wave with a sin-
gular frequency, is verified using a linear model as an example.

4. Verification of numerical analysis results

To verify the results of a numerical analysis using MAT-
LAB, the same model was analyzed by utilizing the com-
mercial software ANSYS AQWAVer. 14.5.

4.1. Analytic model and procedure of AQWA

The input parameters for the ANSYS AQWA simulation
are described in Fig. 8.

The response amplitude operator (RAO) of a structure in
waves is calculated by solving the equation of motion (Eq.
(25)) in the frequency domain.��u2ðMs þMaðuÞÞ � iuCðuÞ þK



$XðuÞ ¼ FðuÞ ð25Þ

Where Ms is the mass of structure, Ma the frequency-
dependent added mass, C the frequency-dependent damping,
K the hydrostatic stiffness, and F the hydrodynamic force
(incident and diffracting forces).

The calculated RAO can then be used to calculate the
frequency response of the total hydrodynamic force, which
consists of the hydrodynamic force f, the inertial force by
added mass, and the damping force generated based on the
Airy wave theory. The total hydrodynamic force is shown in
Eq. (26).

FðtÞ ¼ Re
�
f �Ma

€X�C _X


$eð�utþkxÞ ð26Þ

Fig. 4. Numerical response of pitch motion in the case of Table 2.
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Fig. 6. Numerical response of pitch motion in the case of Table 3.
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Where _X is the complex velocity (¼iuX), €X the complex
acceleration (¼ � u2X), k the wave number and C the system
linear damping matrix, respectively.

4.2. Comparison of AQWA analysis results

The AQWA analysis using a full analysis model and the
numerical analysis using the approximate model by MATLAB
are compared in Fig. 9.

In Fig. 9, “ ” and “ ” are the displacement amplitude
in the heave direction and the amplitude of pitch angular
displacement calculated by MATLAB, respectively, while
“ ” and “ ” are the displacement amplitude in the heave

direction and amplitude of pitch angular displacement
calculated by AQWA, respectively. Compared to the result of
the approximate model, the AQWA result shows a very small
difference in the natural frequency in the pitch direction
(approximate model: 0.038 [Hz] (¼un5), AQWA: 0.032 [Hz]
(un5)). Resonance in the heave direction is generated at the
natural frequency of 0.05 [Hz] and the 1� and 2� compo-
nents of excitation frequency of 0.15 [Hz] (¼u) and 0.3 [Hz]
(¼2u) and frequencies of 0.064 [Hz], 0.118 [Hz], and 0.182
[Hz]. Resonance in the pitch direction is generated at the
natural frequency of 0.032 [Hz] and excitation frequency of
0.15 [Hz]. By analyzing the frequency at which resonance is
generated other than the natural frequency and excitation
frequency in all directions among the resonance frequencies,
it was confirmed that 0.064 [Hz] (¼2un5) is double the
natural pitch frequency, and 0.118 [Hz] (¼u � un5) and
0.188 [Hz] (¼u þ un5) are related to the addition and sub-
traction between the pitch natural frequency and the excita-
tion frequency.
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Fig. 7. Accuracy of approximate model with 4th order Taylor expansion for a large vibration: (a) Approximate solution (2nd order) (b) Approximate solution (4th

order) (c) Exact solution.

Table 3

Input parameters for numerical analysis with large q(t).

u [rad/s] un3 [rad/s] un5 [rad/s] F [N] M [Nm] L [m]

0.5 � 2p 0.03 � 2p 0.04 � 2p 1.0 0.1 10
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5. Conclusion

(1) For a spar-type floating substructure where forced vibra-
tion occurs due to a regular wave, the equations of motion
of a two-degree-of-freedom approximate model consid-
ering the coupling of the heave and pitch motions were
derived, and the characteristics of the frequency response
were analyzed.

(2) It was confirmed that combination resonance occurs not
only at the excitation frequency (u) of a regular wave and
the natural frequency of (un5) in the pitch direction of the

floating substructure, but also at the frequency of
ðu±un5Þ, which is the addition and subtraction between
these two frequencies, and at the frequencies of (2un5) and
ð2u±2un5), which are double the pitch natural frequency
and the addition and subtraction between two frequencies.

(3) The analytic results using the nonlinear equations of mo-
tion with terms approximated from the second to fourth
order using Taylor series expansion were compared with
the analytic results of the full model using ANSYS AQWA
in order to identify the characteristics of the combination
resonance. The comparison verified that the approximate

Fig. 8. ANSYS AQWA FE Modeling parameter.

Fig. 9. Comparison of results by AQWA and MATLAB.
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model using the terms up to the second order can suffi-
ciently identify the combination resonance characteristics
of the full model.

(4) It was confirmed that combination resonance occurs
because a pitching motion affects the heaving motion due
to the geometric correlation of the floating substructure.
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Appendix. Derivation of Eq. (10)

The hydrostatic stiffness kq in the pitch direction at the
pitch angle q(t) becomes

kq ¼ rgV$GMq ¼ rgAw

�
Deq � zðtÞ�$GMq ðA1Þ

and substituting the metacentric height ( GMq) defined in
Eq. (8) gives us

kq ¼ rgAw

�
Deq � zðtÞ�$ Iw

AwDeq

 
1þ zðtÞ

Deq

þ z2ðtÞ
D2

eq

!
$

�
1þ q2

2

�

� rgAw

�
Deq � zðtÞ�$B0G0

ðA2Þ
By neglecting the high order terms, together with the

relation of k ¼ rgAw, one can get

kq ¼ kDeq$
Iw

AwDeq

$

�
1þ zðtÞ

Deq

�
� kzðtÞ$ Iw

AwDeq

� k
�
Deq

� zðtÞ�$B0G0 ðA3Þ

Substituting z(t) in Eq. (7) and neglecting the term q2

2 leads to

kq ¼ Deq

Iw
AwDeq

$

�
1þ ZGðtÞ

Deq

�
$k� Iw

AwDeq

$k$zGðtÞ �
�
Deq

� zGðtÞ
�
$B0G0$k

ðA4Þ

By rearranging the terms, one can get

kq ¼ Deq$

�
Iw

AwDeq

�B0G0

�
$kþB0G0$k$zGðtÞ ðA5Þ

Note that the second term in the first parenthesis and the
second term were cancelled out each other in the procedure of
rearrangement.

Finally, substituting Eq. (A5) into the equation of pitch
motion in Eq. (1) provides us

I€qðtÞ þDeq$

�
Iw

AwDeq

�B0G0

�
$k$qðtÞ þB0G0$k$zGðtÞ$qðtÞ

¼M$cosðutÞ
ðA6Þ
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