광음향 영상화를 위한 PMN-PZT 바늘형 수중청음기 제작

Fabrication of a PMN-PZT needle hydrophone for photoacoustic imaging

Xiaofeng Fan, Yonggang Cao,* 하강렬,**[†] 김무준,** 강현욱, 오정환

(Xiaofeng Fan, Yonggang Cao,* Kanglyeol Ha,**[†] Moojoon Kim,** Hyun Wook Kang, and Junghwan Oh)

부경대학교 의공학과, *College of Sciences, China Jiliang University, **부경대학교 물리학과 (Received February 5, 2016; revised March 2, 2016; accepted April 16, 2016)

초 록: 수 MHz의 초음파를 이용하는 저주파 광음향 영상장치에 적용하는 것을 목적으로 압전단결정 PMN-PZT를 사용한 바늘형 수중청음기를 설계 제작하고, 그 특성을 수신감도가 알려져 있는 상용 PVDF(Polyvinylidene Fluoride) 수중청음기와 비교하여 평가하였다. 설계한 수중청음기의 임펄스응답을 KLM 모델에 의해 시뮬레이션한 결과, 50 Ω의 종단 임피던스에 걸리는 최대 전압을 기준으로 한 수신감도는 -261.6 dB re 1V/μPa이며, 2~12 MHz 대역 에서 5 dB 이내의 비교적 평탄한 특성을 가지는 것으로 예측되었다. 제작한 수중청음기의 수신감도를 순음 펄스를 사용하여 측정한 결과, 측정 가능한 2~8 MHz 대역에서 상용의 수중청음기에 비해 평균 10.9 dB 높게 나타났으며, 그 값은 -255.8±2.8 dB re 1V/μPa이었다. 나아가, 제작한 수중청음기를 기계주사형 광음향 영상장치에 적용하여 머리카 락에 대한 영상을 획득하였는바, 수신된 광음향 신호가 상용의 것보다 크고, 영상 또한 우수함을 알았다. 핵심용어: 광음향 효과, 초음파 트랜스듀서, 압전단결정 PMN-PZT, PVDF 압전막, 초음파 영상

ABSTRACT: For application to several MHz photoacoustic imaging systems, a needle hydrophone was designed and fabricated by using PMN-PZT piezoelectric single crystal, and its characteristics were evaluated through comparison with a commercial PVDF(Polybinylidene Fluoride) hydrophone of which receiving sensitivity is known. The simulation using the KLM model results show that the peak receiving impulse response for 50 Ω terminating impedance of the fabricated hydrophone is -261.6 dB re $1V/\mu$ Pa and the frequency response is relatively flat over 2~12 MHz with fluctuation less than 5 dB. The measurement results using tone burst signals also show that it has higher (ave. 10.9 dB) sensitivity than the commercial hydrophone in 2~8 MHz, and the receiving sensitivity of -255.8±2.8 dB re $1V/\mu$ Pa was measured for the fabricated hydrophone. In addition, it is known that the photoacoustic signals and the image of a hair obtained by a mechanical scanned photoacoustic imaging system with the fabricated hydrophone were bigger and better than those obtained with the commercial hydrophone. **Keywords:** Photoacoustic effect, Ultrasonic transducer, Piezoelectric crystal PMN-PZT, PVDF (Polyvinylidene Fluoride) piezoelectric film, Ultrasound image

PACS numbers: 43.35.Ud, 43.35.Sx

I. 서 론

물질이 빛 에너지를 흡수하면 국부적으로 온도가 높아지고 열팽창에 의해 압력파가 만들어지는 현상 인 광음향 효과는 Bell^[1]에 의해 1880년에 최초로 보 고되었다. 그러나 광음향 효과에 의한 초음파 발생 의 메커니즘이나 발생된 초음파의 전파 특성에 대한 연구, 그리고 그 초음파를 비파괴 평가 등에 이용하 기 위한 연구는 1980년대 이후 고출력 펄스 레이저가 도입되면서 활발히 이루어졌다.^[24] 그러한 연구에 있어서는 일반적으로 집속시킨 레이저 빔을 시료에 조사하여 초음파를 발생시키고 있다.광음향 효과에

[†]Corresponding author: Kanglyeol Ha (hakl@pknu.ac.kr) Department of Physics, Pukyong National University, 45 Yonso-ro, Nam-gu, Busan 48513, Republic of Korea (Tel: 82-51-629-5570, Fax: 82-51-611-6357)

의한 에너지변환 효율은 시료에 따라 다르나, 효율 이 좋은 크롬(Cr)에서 조차도 약 1/10⁵으로 매우 낮 다.^[5] 한편, Bowen^[6]에 의해 인체조직으로부터 광음 향 신호를 얻는 방법이 제시된 이후 미세혈관을 영 상화하기 위한 연구가 2000년대에 들어와 활발히 이 루어졌다.^[7-9] 그 결과로서 최근에는 다양한 형태의 광음향 영상장치가 개발되어져 시판되고 있는데, 신호 획득 및 처리 방법에 따라 PAM(Photoacoustic Microscope)와 PAT(Photoacoustic Tomography) 장치로 분류된다. 그 중에서 보다 깊고 넓은 영역의 영상 획 득이 가능한 PAT 장치에서는 중심주파수가 수 MHz 인 초음파 트랜스듀서가 자주 이용되어져 왔다.^[10,11]

PAT 장치를 이용한 영상화를 위해서는 크기가 작 은 하나의 초음파 트랜스듀서를 표적 주위로 회전 시키거나 다수의 트랜스듀서를 배열하여 광음향신 호를 수신하는데, 그 트랜스듀서의 압전재료로서 종 래 PVDF(Polyvinylidene Fluoride) 또는 P(VDF-TrFE) [Poly(Vinylidene Fluoride-Trifluoroethylene)] 고분자 압 전막이 광범위하게 사용되어져 왔다.[12,13] 초음파 트 랜스듀서 제작용으로 시판되는 고분자 압전막은 대 부분 수~ 약 백 µm의 두께를 가지며, 그것으로 만든 수신용 트랜스듀서, 즉, 수중청음기는 1 MHz 이하에 서 부터 수십 MHz 이상의 넓은 주파수 영역에서 특 성이 평탄하고 비교적 높은 수신감도를 갖는다. 그 러나 혈관뿐 만 아니라 초기 유방암과 같은 다양한 종류의 표적에서 발생하는 미세한 광음향신호를 수 신하여 고화질의 영상으로 나타내는 데는 그 감도가 충분하고 할 수 없다. 따라서 몇 층의 압전막을 중첩 시켜 감도를 향상시키거나, 웨이블릿 변환(wavelet transform)과 같은 신호처리에 의해 잡음을 제거시키 는 방법 등이 도입되고 있다.^[9,14]

본 연구에서는 저주파 광음향 영상장치에 있어서 음향신호 수신 센서로서의 이용 가능성을 타진하는 것을 목적으로 압전단결정 PMN-PZT를 사용하여 수 MHz 대역에서 수신감도가 높고, 주파수 특성이 비 교적 평탄한 바늘형 수중청음기를 설계, 제작하였 다. 제작된 수중청음기의 특성을 수신감도가 알려져 있는 상용 PVDF 수중청음기와 비교하여 파악한 후, 광섬유를 사용하는 저주파의 기계주사형 광음향 영 상장치에 적용하여 머리카락에 대한 광음향 신호와 영상을 획득하고 그 특성을 평가하였다.

Ⅱ. 설계 및 제작

초음파 트랜스듀서의 출력 음압이나 음장 측정에 사용되는 바늘형 수중청음기는 일반적으로 직경이 약 1.0 mm 이하인 원형이며, 주로 폴리머인 고분자 압전막으로 만들어진다. 고분자 압전막은 음향임피 던스가 작아 수중에서 사용할 때 별도의 정합층이 필요하지 않고, 유연하기 때문에 재단하기 쉽다. 그 러나 압전단결정은 음향임피던스가 압전세라믹인 PZT와 유사하게 30 MRayl 이상이 되기 때문에 수중 에서 사용할 때 수신효율 및 대역폭을 향상시키기 위한 음향정합층이 필요하고, 방향성이 강하며 부셔 지기 쉽기 때문에 작은 크기의 원형으로 가공하기 곤란하다. 따라서 본 연구에서는 고상 성장시킨 PMN-PZT(Ceracomp Co, Ltd.)의 (0, 0, 1)면에 두 층의 음향 정합층을 설치한 후 0.5×0.5 mm인 정사각형으로 다 이싱하여 사용하였다. 그리고 그 뒷면에는 전극을 겸한 후면체로서 구리(Cu)선을 사용하였다. 즉, Fig. 1과 같은 구조를 갖도록 설계하고, 그 구조에 대해 첫 번째(내부)와 두 번째(외부) 정합층의 음향 특성

Fig. 1. Structure of the needle with PMN-PZT and matching layers.

(1)

(2)

레이션에 있어서 압전체의 두께는 d = λ/2에 따르는 압전체의 반공진주파수가 약 7 MHz가 되는 0.3 mm 를 참고로 두께를 변화시켜가면서 반복 시뮬레이션을 수행하여 보다 평탄한 특성을 갖는 값을 택하였다.

시뮬레이션은 전기음향변환 관계를 고려하여 주 어진 구조에 수신기의 입력 임피던스를 포함시킨 전 체 전기임피던스를 계산한 후, 특정 크기의 임펄스 음압을 음향단에 가했을 때 그 수신기 입력 임피던 스 양단에 나타나는 전압을 산출하는 것이다. 이때, 수신기의 입력 임피던스는 수중청음기의 종단 임피 던스에 해당된다. Fig. 2(a)와(b)는 1 MPa의 임펄스음 압을 수중청음기에 가했을 때 50 Ω의 종단 임피던스 에 걸리는 전압 파형과 규격화 진폭스펙트럼의 시뮬 레이션 결과를 각각 나타낸다. Fig. 2(a)에서 알 수 있 는 바와 같이 설계된 수중청음기 출력 전압의 최댓 값은 83.5 mV로서, 그 수신감도는 -261.6 dB re 1V/µ Pa이다.

제작에 있어서는 먼저 양면이 전극인 평판 PMN-PZT 압전체에 두 층의 음향정합층을 에폭시(EPO-TEK

t

 α

 Z_{a} v_i ρ k_t $\epsilon_{33}^S/\epsilon_0$ (kg/m^3) (dB/mm/MHz) (MRayl) (m/s) (mm)PMN-PZT 31.2 4249 7350 0.01 0.31 0.62 1030 8.60 2375 3621 0.41 0.063 _ 1st matching layer _ 2.85 2015 1413 0.22 0.050 2nd matching layer -_ Backer 41.6 4660 8930 ~ 0 >50 100 80 (dB) 60 40 Relative magnitude Amplitude (mV) 20 0 -20 -40 -60 -25 -80 -30¹¹0 -100 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12 Time (us) Frequency (MHz)

Table 1. Physical parameters of the transducer materials.

(a)

임피던스를 DeSilets et al.^[15]의 방법에 따라 다음과

여기서 ZaT와 Zaw는 각각 압전체와 물의 음향특성임

피던스이다. 다음으로 그와 유사한 임피던스 및 두

께를 갖는 시료를 (주)코미코(www.komico.com)에 의

뢰하여 주문 제작하였는데, 첫 번째 정합층은 철 분

말을 혼합한 에폭시, 두 번째 정합층은 에폭시 자체

를 압축시켜 필름형태로 만든 것이다. 음속 및 감쇠

계수를 측정한 후, 그 값을 KLM 등가회로^[16]를 이용

한 시뮬레이션을 수행하여 1~10 MHz 대역에서 수

신감도 및 대역폭이 우수한 특성을 나타내는 각 층

의두께를산출하였다. 본 연구에서 사용한 PMN-PZT의

전기기계결합계수 k,와 유전상수를 포함한 수중청

음기 각 층의 물성값은 Table 1에 나타내었다. 시뮬

 $Z_1 = Z_{aT}^{4/7} \cdot Z_{aw}^{3/7} = 8.50 \,(\text{MR ayl}),$

 $Z_2 = Z_{aT}^{1/7} \bullet Z_{aw}^{6/7} = 2.31 \,(\text{MR ayl}),$

같이 각각 구하였다.

Fig. 2. Simulated impulse response of the designed PMN-PZT needle hydrophone with 50 \mathcal{Q} terminal impedance: (a) waveform, (b) amplitude spectrum.

The Journal of the Acoustical Society of Korea Vol.35, No.3 (2016)

(h)

177

Fig. 3. Photograph of the fabricated PMN-PZT needle hydrophone.

301, Epoxy Technology, Inc.)를 사용하여 접착한 후 다 이성하였다. 그리고 그것을 에나멜 피복이 되어 있 는 직경 0.7 mm인 구리선의 한쪽 끝에 도전성접착제 로 접착하여 신호선(+)으로 사용하였다. 다음으로, 내경 0.96 mm, 외경 1.24 mm, 길이 40 mm 인 바늘형의 스테인리스 봉 속에 압전체와 정합층만 노출되도록 주입하고, 스퍼터링에 의해 금(Au)을 바늘 끝 부분에 도포하여 스테인리스 봉과 압전체의 다른 전극이 도 전되도록 하고, 그것을 접지선(-)으로 사용하였다. 그렇게 제작된 바늘을 소형 커넥터가 달려 있는 황 동 홀더와 케이블에 연결하였다. 제작한 수중청음기 의 실물 사진은 Fig. 3에 나타낸다.

Ⅲ. 특성 평가 및 광음향 영상 장치에의 적용

3.1 초음파 수신특성

제작한 수중청음기의 초음파 수신 특성은 주파수 별 수신감도가 알려져 있는 상용의 바늘형 수중청음 기($\phi = 0.5$ mm, Precision Acoustics, Ltd.)와 비교하여 평가하였다. 즉, 수조 내에서 중심주파수 5 MHz의 비파괴검사용 트랜스듀서(A332S, Panametrics-NDT) 를 임펄스로 간주되는 스파이크 펄스 및 순음 펄스 (tone burst)로 구동시키고, 방사되는 초음파를 제작 한 수중청음기와 상용 수중청음기로 각각 측정하여 비교하였다. 여기서 사용한 상용의 수중청음기는 수 신감도가 1 MHz에서 20 MHz까지 1 MHz 간격으로 알려져 있고, 8 dB의 전치증폭기가 장착되어 있는 것 이다. 스파이크 펄스의 최댓값은 -100 V, 순음 펄스

Fig. 4. Comparisons of measured waveforms between the fabricated PMN-PZT and a commercial PVDF needle hydrophone for (a) a spike pulse, and (b) a tone burst waves radiation.

의 경우 진폭을 10 V_p로 일정하게 고정시키고 반송 주파수를 바꾸어가면서 구동시켰을 때 두 수중청음 기의 출력 전압의 크기를 비교하였다. Fig. 4(a)는 스 파이크 펄스로 구동했을 때의 수신파형을 나타내며, Fig. 4(b)는 반송주파수 5 MHz로 구동했을 때의 수신 파형을 나타낸다. Fig. 4(a)의 결과로 부터 제작한 수 중청음기가 본 연구에서 사용한 상용의 것에 비해 최대 전압 진폭이 약 1.8배 크게 나타나는 것을 알 수 있는데, 이것은 전치증폭기의 증폭률을 고려하면 약 13.1 dB 큰 값이다. Fig. 4(b)는 5 MHz 순음 펄스에 대 한 파형을 나타내는데, 제작한 수중청음기의 전압 진폭이 약 1.7 배로서 12.6 dB 크게 나타났다.

Fig. 5(a)는 순음 펄스의 주파수를 1 MHz 간격으로 변경시키면서 측정한 전압진폭의 크기를 비교한 것 이다. 사용한 트랜스듀서의 공진특성과 수중청음기

Fig. 5. Comparison of (a) output voltages, and (b) receiving sensitivities of the fabricated PMN-PZT needle hydrophone and a commercial PVDF hydro-phone. The output voltages of the PVDF hydrophone were amplified by 8 dB.

의 감도 때문에 측정이 가능한 주파수 범위가 제한 되었는데,2~8 MHz의 영역에서 그림에서와 같이 제 작한 수중청음기의 출력 전압이 상용에 비해 평균 1.4배 크게 나타났다. Fig. 5(b)는 두 수중청음기의 주 파수별 수신감도를 비교하여 나타낸 것이다. 각각은 50 Ω 종단 임피던스에 대한 것인데, 제작한 수중청 음기에 대한 값은 Fig. 5(a)에서의 전압의 차이와 전 치증폭기의 증폭률로 부터 산출된 것이다. 제작한 수중청음기는 주파수 특성이 상용에 비해 다소 평탄 하지 못하나 수신감도는 평균 10.9 dB 높아서 -255.8 ±2.8 dB re 1V/μPa인 것으로 나타났다.

3.2 광음향 영상 장치에의 적용

광음향 영상을 얻기 위해서는 표적에서 발생하는 초음파를 다수의 지점에서 수신해야하는데, 이를 위해서는 하나의 수중청음기를 기계적으로 주사하 거나 다수의 요소를 갖는 배열형 수중청음기를 이용 해야 한다. 본 연구에서는 Fig. 6에서 나타낸 바와 같 이 스탭 모터에 의해 움직이는 스캐너에 광섬유와 바늘형 수중청음기를 장착하고, x, y평면 상에서 이 동시키면서 광음향신호를 발생시키고, 동시에 수신 하였다.

사용한 장치의 구성은 Fig. 6에 나타낸 바와 같다. 광원으로서는 OPO(Surelite OPO plus, Continuum Co.) 가 연결되어 있는 파장 532 nm의 Nd:YAG 레이저 (Surelite III, Continuum Co.)를 사용하였는데, 펄스폭 이 약 5 ns이며 반복주파수는 10 Hz이다. OPO의 출력

Fig. 6. Schematics of photoacoustic imaging system with a needle hydrophone.

Fig. 7. Photoacoustic signals from a hair: (a) fabricated needle hydrophone, (b) commercial needle hydrophone.

은 직경 φ = 1.0 mm, 길이 L = 1.0 m 인 광섬유를 거 쳐 수중에 설치된 시료에 조사되도록 하였다. 시료 로서는 굵기가 약 0.1 mm인 사람의 머리카락을 사용 하였다.

Fig. 7은 머리카락 시료에 대해 제작한 수중청음기 와 상용의 수중청음기로 획득한 광음향 신호의 한 예를 나타낸다. Fig. 7(a)의 앞부분 한 사이클이 Fig. 7(b)에 대응한다. 그러나 상용의 PVDF 수중청음기 의 대역폭이 제작한 것에 비해 대단히 넓어 수십 MHz 범위에 까지 평탄한 특성을 가지기 때문에 펄 스가 짧게 나타난다. Fig. 7(a)에서 한 사이클 이후의 링잉(ringing)은 정합층 경계에서의 다중반사에 의한 것으로 추정된다. 대응하는 신호의 최댓값을 비교하 면 비파괴검사용 트랜스듀서를 사용한 측정에서와 유사하게 약 1.7 배 크게 나타남을 알 수 있다. Fig. 8 은 시료에 대한 광음향 영상인데, 2차원 평면에서 기 계적으로 스캐닝하면서 수신한 Fig. 7의 신호들을 휘

Fig. 8. Photoacoustic images of a hair: (a) fabricated needle hydrophone, (b) commercial needle hydrophone.

도 변환하여 얻은 것이다. Fig. 8(a)로부터 제작한 수 중청음기에 의한 영상은 거의 머리카락 전체에서 광 음향 신호가 획득되어 굵기가 약 80 µm로 나타나나, 상용에서 얻은 Fig. 8(b)는 약 74 µm로 나타났다. 광학 현미경(x1200)으로 측정한 굵기는 약 70 µm로이었 다. Fig. 8(a)의 영상이 전체적으로 선명하며, 광음향 신호의 크기가 작은 가장자리에서 그 효과가 더욱 분 명하게 나타난다.

Ⅳ. 결 론

압전단결정 PMN-PZT를 사용한 0.5 × 0.5 mm의 바 늘형 수중청음기를 설계 제작하고, 그 특성을 상용 PVDF 수중청음기와 비교하여 평가한 후, 기계주사 형 광음향 영상장치에 적용하여 머리카락에 대한 영 상을 획득하였다. 설계한 수중청음기의 임펄스응답 을 KLM 모델에 의해 시뮬레이션한 결과, 50 Ω의 종 단 임피던스에 걸리는 최대 전압을 기준으로 한 수 신감도는 -261.6 dB re 1V/µPa이며, 2~12 MHz 대역 에서 5dB 이내의 비교적 평탄한 특성을 가지는 것으 로 예측되었다. 그리고 비파괴 검사용 트랜스듀서에 방사되는 순음 펄스에 대한 수신전압의 측정결과, 제작한 수중청음기는 2~8 MHz에서 비교한 상용의 수중청음기에 비해 주파수 특성은 그다지 평탄하지 않으나 수신감도는 평균 10.9 dB 높아서 -255.8±2.8 dB re 1V/µPa인 것을 확인하였다. 나아가, 머리카락 에서 얻어진 광음향 신호 또한 상용에 비해 크며 영 상도 우수함을 알았다. 제작된 수중청음기는 금후 PAT 장치 등 저주파 광음향 영상장치에서의 초음파 트랜스듀서로서 이용할 수 있을 것으로 기대된다.

감사의 글

이 논문은 부경대학교 자율창의학술연구비(2015 년)에 의하여 연구되었음.

Referencese

- 1. A. G. Bell, "On the production and reproduction of speech by light," Am. J. Sci. 3rd Series **20**, 305-324 (1880).
- C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, "Quantitative studies of thermally generated elastic waves in laser-irradiated metals," J. Appl. Phys. 51, 6210-6216 (1980).
- D. O. Thompson and D. E. Chimenti, *Review of progress in quantitative nondestructive evaluation* (Plenum Press, New York and London, 1988), pp.1211-1218.
- S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, "Laser-generated ultrasound: its properties, mechanisms and multifarious applications," J. Phys. D: Appl. Phys. 26, 329-348 (1993).
- H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, "Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy," Sci. Rep. 2:989, PMC3524551, 1-8 (2012).
- T. Bowen, "Radiation-induced thermoacoustic soft tissue imaging," IEEE Ultrasonics Symposium, 2, 817-822 (1981).
- X. Wang, Y. Pang, and G. Ku, "Three-dimensional laserinduced photoacoustic tomography of mouse brain with the skin and skull intact," Optics Lett. 28, 1739-1741 (2003).
- M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Review of Scientific Instruments, 77, 041101, 1-22 (2006).
- L. Xi, X. Li, and H. Jiang, "Variable-thickness multilayered polyvinylidene fluoride transducer with improved sensitivity and bandwidth for photoacoustic imaging," Appl. Phys. Lett. 101, 173702, 1-2 (2012).
- G. Gu and L. V. Wang, "Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent," Optics Lett. 12, 507-509 (2005).
- J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, "Curved array photoacoustic tomographic system for small animal imaging," J. Biomed. Opt. 13, 024007, 1-10 (2008).
- X Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, "Photoacoustic imaging with a commercial ultrasound

system and a custom probe," Ultrasound Med. Biol. 37, 484-492 (2011).

- C. Li and L. V. Wang, "Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector," J. Biomed. Opt. 12, 024047, 1-3 (2009).
- S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, "Laser optoacoustic imaging system for detection of breast cancer," J. Biomed. Opt. 14, 024007 (2009).
- C. S. DeSilets, J. D. Fraser, and G. S. Kino, "The design of efficient brodeband piezoelectric transducers," IEEE Trans. Sonics Ultrason. 25, 115-125 (1978).
- R. Krimholtz, D. A. Leedom, and G. L. Matthei, "New equivalent circuit for elementary piezoelectric transducers," Electronics Lett. 38, 338-339 (1970).

🛛 저자 약력

Xiaofeng Fan

2013년 6월: 중국 동북임업대학 전자정보 공학 학사 2015년 8월: 부경대학교 대학원 의공학과

석사 2015년 9월 ~ 현재: 부경대학교 대학원 물리학과 박사과정 재학중

Yonggang Cao

2007년 6월: 중국 소주대학 재료공학과 학사

2010년 6월: 동 대학원 재료공학과 석사 2011년 8월: 부경대학교 대학원 물리학과 석사

2015년 2월: 부경대학교 대학원 물리학과 박사

2015년 3월 ~ 현재: College of Sciences, China Jiliang University전임강사

▶하강렬(Kanglyeol Ha)

1978년 2월: 부산수산대학 어업학과 어업 물리전공 학사 1978년 3월 ~ 1983년 2월: 국방과학연구소 연구원 1982년 8월: 부산수산대학 대학원 수산물리 전공 석사 1990년 3월: 일본 도오호쿠대학 대학원 공학연구과 박사 1991년 3월 ~ 현재: 부경대학교 물리학과 교수 ▶ 김 무 준 (Moojoon Kim)

학사

1985년 2월: 부산수산대학 응용물리학과

1990년 2월: 부산수산대학 대학원응용물리 학과 석사

1994년 3월: 일본 도호쿠대학 대학원 공학 연구과 박사

1994년 3월 ~ 현재: 부경대학교 물리학과 교수

▶강현욱(Hyun Wook Kang)

2002년 2월: 연세대학교 기계공학과 학사 2004년 12월: University of Texas at Austin, 기계공학과 석사 2006년 12월: University of Texas at Austin,

의공학과 박사

2007년 1월~2008년 3월: American Medical Systems Inc. (미국), 선임연구원 2008년 4월~2012년 2월: Endo Healthcare (미국), 책임연구원

2012년 3월 ~ 현재: 부경대학교 의공학과 부교수

▶오정환(Junghwan Oh)

1992년 2월: 부경대학교 기계공학과 학사 1994년 2월: 부경대학교 기계공학과 석사 2003년: 텍사스주립대학(오스틴), 의공학 석사

2006년: 텍사스주립대학(오스틴), 의공학 박사

2007년: MD Anderson Cancer Center 전임 강사

2008년~현재: 부경대학교 의공학과 교수