DOI QR코드

DOI QR Code

다채널 실시간 능동 소음제어 시스템을 이용한 정숙공간 성능개선

Performance improvement of a quiet zone using multichannel real-time active noise control system

  • Mu, Xiangbin (Department of Electrical, Electronics and Communication Engineering, Korea University of Technology and Education) ;
  • Ko, JinSeok (Department of Electrical, Electronics and Communication Engineering, Korea University of Technology and Education) ;
  • Rheem, JaeYeol (Department of Electrical, Electronics and Communication Engineering, Korea University of Technology and Education)
  • 투고 : 2016.01.28
  • 심사 : 2016.05.17
  • 발행 : 2016.05.31

초록

3차원 잡음환경에서 정숙공간은 현실적으로 매우 중요한 문제이다. 본 논문은 3차원 잡음 환경에서 정숙 공간의 성능을 크기와 소음제거 면에서 향상시키는 다채널 실시간 능동소음 제어시스템의 개발과 구현을 다루고 있다. 제안된 능동소음제어 시스템은 delay-compensated Filtered-X Least Mean Square (FXLMS) 알고리즘을 적용한다. 이와 같은 시스템의 실시간 적용을 위해서 TMS320C6713 DSP 프로세서 기반으로 설계되었다. 제안된 실시간 다채널 능동소음제어기의 성능평가는 100 ~ 500 Hz 범위의 다양한 잡음 환경에서 잡음제거를 수행하고, 정숙공간에서 음압레벨(Sound Pressure Level, SPL)측정하여 평가하였다. 실험결과는 정숙공간의 크기는 만족스러우며 최대 24 dB의 소음 감쇄가 성공적으로 생성된 것을 보여준다.

Generation of a quiet zone in noisy environment is undoubtedly of considerable realistic significance. This paper describes development and implementation of a multichannel real-time active noise control (ANC) system for 3 dimensional noisy environment to enhance the quiet zone performance in terms of size and noise cancellation gain. The proposed ANC system employes a multichannel delay-compensated filtered-X least mean square (FXLMS) algorithm; its real-time implementation is designed in TMS320C6713 digital signal processor (DSP) board. The system is evaluated for cancelling various tonal frequency noises in the range from 100 to 500 Hz, and the performance is then illustrated by measuring the quiet zone in terms of sound pressure level (SPL) attenuation. Experiment results show that a quiet zone of quiet with satisfactory size and maximum 24 dB noise attenuation is successfully generated.

키워드

참고문헌

  1. S. J. Elliot, Signal Processing for Active Control (Academic Press, London, UK, 2001), pp. 6-13.
  2. S. M. Kuo and D. R. Morgan, Active Noise Control Systems: Algorithms and DSP Implementations (Wiley, New York, NY, 1996), pp. 5-16.
  3. X. Mu, J. Ko, and J. Rheem, "Modified FxLMS algorithm for active noise control and its real-time implementation," IEE. Kr. 50, 172-176 (2013).
  4. A. Esperance, M. Bouchard, B. Paillard, C. Guigou, and A. Boudreau, "Active noise control in large circular duct using an error sensors plane," Applied Acoust. 57, 357-374, (1999). https://doi.org/10.1016/S0003-682X(98)00060-7
  5. K. Beemanpally, K. Pottim, and S. Kuo, "Multi-channel hybrid active noise control system for infant incubators," in Proc. IEEE Int. Conf. 69-76 (2010).
  6. T. Jung, J. Kim, K. Kim, and S. Nam, "Active noise reduction system using multi-channel ANC," 11th Int. Conf. on Control, Automation and Systems, (2011).
  7. E. Bjarnason, "Active noise cancellation using a modified form of the filtered-x LMS algorithm," in Proc. 6th Eur. Signal Processing Conf. 2, 1053-1056 (1992).
  8. M. Bouchard and S. Norcross, "Computational load reduction of fast convergence algorithms for multichannel active noise control," Signal Proce. 83, 121-134 (2003). https://doi.org/10.1016/S0165-1684(02)00382-1

피인용 문헌

  1. Quiet Zone Enhancement for a Target Location Using an Improved Virtual Sensing Algorithm vol.6, pp.4, 2017, https://doi.org/10.3390/electronics6040076