DOI QR코드

DOI QR Code

Effect of the Combination of Point Loads on the Design Flexural Capacity for Fiber Reinforced Concrete Floor Slab

집중하중 조합에 의한 섬유 보강 콘크리트 바닥슬래브의 설계 휨 내력

  • Received : 2016.03.12
  • Accepted : 2016.03.21
  • Published : 2016.03.30

Abstract

In this study, the flexural capacity of fiber reinforced concrete floor slabs were evaluated using main design loads, racking and moving loads. Based on design standards and guidelines, the magnitude and loaded area of each load were determined, and its relationship was assessed. For the application of a single load, flexural capacity should be evaluated in the edge of a floor slab. In addition, the slab with thickness and concrete strength, greater than 180mm and 35MPa, respectively, sufficiently satisfied flexural capacity with a minimum of equivalent flexural strength ratio. The combination of racking loads required the largest equivalent flexural strength ratio to satisfy the flexural capacity of the floor slab. The combination of racking and moving loads showed equivalent flexural strength ratio smaller than the case of combination of racking loads, but larger than the application of single racking or moving loads. The results of this study indicated that the flexure of fiber reinforced concrete floor slabs should be designed using the combination of design loads.

본 연구에서는 섬유 보강 콘크리트 바닥슬래브의 주요 설계하중인 선반하중과 이동하중에 의한 휨 내력을 평가하였다. 설계기준을 바탕으로 각 하중의 크기와 작용면적을 정의하였으며, 그 관계를 분석하였다. 단일하중에 의해서는 슬래브 경계면에서 휨 내력이 평가되어야 하며, 슬래브 두께 180mm 이상, 콘크리트 강도 35MPa 이상일 때는 최소 등가 휨강도비로써 휨 내력을 충분히 만족하였다. 조합하중에 의해서는 선반하중간의 조합이 가장 큰 등가 휨강도비를 요구하였으며, 선반하중과 이동하중의 조합은 선반하중간의 조합에 비해서는 작게 평가되었고, 단일 하중에 비해서는 크게 평가되었다. 본 연구결과 섬유 보강 콘크리트 바닥슬래브의 휨 설계는 하중 조합에 의한 내력 평가가 필요함을 확인하였다.

Keywords

References

  1. AIK(Architectural Institute of Korea). (2013). Korean Building Code, Ministry of Land, Transport and Maritime Affairs [in Korean].
  2. Jung, W.K., Hong, G.H., Lee, C.D., Seo, C.H., Yu, T.D. (2007). "Experiment study about structural performance of sfrc slabs on grade", KCI Fall Conference, 197-200 [in Korean].
  3. KRTA(Korea Road & Transportation Association). (2010). Korean Highway Bridge Design Code, Ministry of Land, Transport and Maritime Affairs [in Korean].
  4. Lee, C.D., Hong, G.H., Seo, C.H., Yu, T.D. (2007). "Verfication of load-carrying capacity of steel fiber reinforced concrete slab-on-grad", KCI Fall Conference, 337-340 [in Korean].
  5. Lee, J.H., Cho, B., Cho, C. (2016). Design of ground floor slab according to the method for evaluating the tensile performance of steel fiber reinforced concrete, Journal of the Korea Concrete Institute, 28(1), 95-104 [in Korean]. https://doi.org/10.4334/JKCI.2016.28.1.095
  6. Meyerhof, G.G. (1962). Load carrying capacity of concrete pavement, Journal of the Soil Mechanics and Foundations Divisions, Proceedings of the American Society of Civil Engineers, 88, 89-166.
  7. Overli, J. (2014). Experimental and numerical investigation of slabs on ground subjected to concentrated load, Central European Journal of Engineering, 4(3), 210-225.
  8. Technical Report(TR) 34. (2003). Concrete Industrial Ground Floors: A Guide to Design and Construction, 3rd Edition, Concrete Society, Crowthorne, UK.