DOI QR코드

DOI QR Code

Bivariate reliability models with multiple dynamic competing risks

다중 동적 Competing Risks 모형을 갖는 이변량 신뢰성 모형에 관한 연구

  • Kim, Juyoung (Department of Statistics, Ewha Womans University) ;
  • Cha, Ji Hwan (Department of Statistics, Ewha Womans University)
  • 김주영 (이화여자대학교 통계학과) ;
  • 차지환 (이화여자대학교 통계학과)
  • Received : 2016.04.19
  • Accepted : 2016.05.17
  • Published : 2016.05.31

Abstract

Under variable complex operating environment, various factors can affect the lifetimes of systems. In this research, we study bivariate reliability models having multiple dynamic competing risks. As competing risks, in addition to the natural failure, we consider the increased stress caused by the failure of one component, external shocks, and the level of stress of the working environment at the same time. Considering two reliability models which take into account all of these competing risks, we derive bivariate life distributions. Furthermore, we compare these two models and also compare the distributions of maximum and minimum statistics in the two models.

다양하게 변화하는 복잡한 생존환경 하에서는 여러 요인이 동시에 사람이나 시스템의 수명에 영향을 줄 수 있다. 본 연구에서는 여러 요인이 동시에 수명에 영향을 주면서, 영향력의 크기가 상황에 따라 동적으로 변화하는 신뢰성 모형에 관한 연구를 수행한다. 수명에 영향을 주는 요인으로, 자연적 고장과 더불어, 하나의 개체의 사망이나 고장으로 인한 잔여 개체에 대한 스트레스 증가, 외부 충격, 그리고 생존 환경 스트레스 수준을 동시에 고려한다. 이들 요인들을 모두 포함하는 두 가지 모델을 고려하고, 이변량 수명 분포를 유도한다. 또한 이들 두 모형을 서로 비교하며, 이들 모형으로부터 얻어지는 최대값의 분포와 최소값의 분포를 비교하고자 한다. 제안된 두 가지 신뢰성 모형에서의 최대값 분포와 최소값 분포의 비교를 위하여 확률적 순서화에 관한 개념을 소개하며, 이에 기초하여 최대값 분포와 최소값 분포에 대한 확률적 비교를 수행한다.

Keywords

References

  1. Aven, T. and Jensen, U. (1999). Stochastic models in reliability, Springer, New York.
  2. Balakrishnan, N. and Lai, C. (2009). Continuous bivariate distributions, 2nd Ed., Springer, New York.
  3. Block, H. W. and Basu, A. P. (1974). A continuous bivariate exponential extension. Journal of the American Statistical Association, 69, 1031-1037.
  4. Carriere, J. F. (2000). Bivariate survival models for coupled lives. Scandinavian Actuarial Journal, 1, 17-32.
  5. Cha, J. H. and Mi, J. (2007). Study of a stochastic failure model in a random environment. Journal of Applied Probability, 44, 151-163. https://doi.org/10.1017/S0021900200002771
  6. Cha, J. H. and Mi, J. (2011). On a stochastic survival model for a system under randomly variable environment. Methodology and Computing in Applied Probability, 13, 549-561. https://doi.org/10.1007/s11009-010-9171-1
  7. Downton, F. (1970). Estimation of parametric functions in Downton's bivariate exponential distribution. Journal of Royal Statistical Society B, 32, 408-417.
  8. Finkelstein, M. and Cha, J. H. (2013). Stochastic Modelling for Reliability (Shocks, Burn-in and Heterogeneous Populations), Springer, London.
  9. Freund, J. E. (1961). A bivariate extension of the exponential distribution. Journal of the American Statistical Association, 56, 971-977. https://doi.org/10.1080/01621459.1961.10482138
  10. Gumbel, E. J. (1960). Bivariate exponential distribution. Journal of the American Statistical Association, 55, 698-707. https://doi.org/10.1080/01621459.1960.10483368
  11. Hawkes, A. G. (1972). A bivariate exponential distribution with application to reliability. Journal of the Royal Statistical Society B, 34, 129-131.
  12. Hayakawa, Y. (1994). The construction of new bivariate exponential distributions from a Bayesian perspective. Journal of the American Statistical Association, 89, 1044-1049. https://doi.org/10.1080/01621459.1994.10476840
  13. Iyer, S. K. and Manjunath, D. (2004). Correlated bivariate sequencesfor queueing and reliability Applications. Communications in Statistics-Theory and Methods, 33, 331-350. https://doi.org/10.1081/STA-120028377
  14. Jagger, C. and Sutton, C. J. (1991). Death after marital bereavement-Is the risk increased? Statistics in Medicine, 10, 395-404. https://doi.org/10.1002/sim.4780100311
  15. Kalbfleisch, J. D. and Prentice, R. L. (1980). The statistical analysis of failure time data, Wiley, New York.
  16. Kebir, Y. (1991). On hazard rate process. Naval Research Logistics, 38, 865-876. https://doi.org/10.1002/nav.3800380606
  17. Lee, H. and Cha, J. H. (2014). On construction of general classes of bivariate distributions. Journal of Multivariate Analysis, 127, 151-159. https://doi.org/10.1016/j.jmva.2014.02.007
  18. Lee, H. S. and Kim, Y. M. (2013). Estimation of lapse rate of variable annuities by using Cox proportional hazard model. Journal of the Korean Data & Information Science Society, 24, 723-736. https://doi.org/10.7465/jkdi.2013.24.4.723
  19. Lee, J. T. (2014). Prediction of K-league soccer scores using bivariate Poisson distributions. Journal of the Korean Data & Information Science Society, 25, 1221-1229. https://doi.org/10.7465/jkdi.2014.25.6.1221
  20. Lee, L. (1979). Multivariate distributions having Weibull properties. Journal of Multivariate Analysis, 9, 267-277. https://doi.org/10.1016/0047-259X(79)90084-8
  21. Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution. Journal of the American Statistical Association, 62, 30-44. https://doi.org/10.1080/01621459.1967.10482885
  22. Sarhan, A. M. and Balakrishnan, N. (2007). A new class of bivariate distributions and its mixture. Journal of Multivariate Analysis, 98, 1508-1527. https://doi.org/10.1016/j.jmva.2006.07.007
  23. Sarkar, S. K. (1987). A continuous bivariate exponential distribution. Journal of the American Statistical Association, 82, 667-675. https://doi.org/10.1080/01621459.1987.10478481
  24. Shaked, M. (1984). Extension of the Freund distribution with applications in reliability theory. Operations Research, 32, 917-925. https://doi.org/10.1287/opre.32.4.917

Cited by

  1. The comparative studies on stress-strength reliability for Rayleigh distribution vol.29, pp.4, 2016, https://doi.org/10.7465/jkdi.2018.29.4.1095