DOI QR코드

DOI QR Code

Modeling of random effects covariance matrix in marginalized random effects models

  • Lee, Keunbaik (Department of Statistics, Sungkyunkwan University) ;
  • Kim, Seolhwa (Department of Statistics, Sungkyunkwan University)
  • Received : 2016.02.12
  • Accepted : 2016.04.12
  • Published : 2016.05.31

Abstract

Marginalized random effects models (MREMs) are often used to analyze longitudinal categorical data. The models permit direct estimation of marginal mean parameters and specify the serial correlation of longitudinal categorical data via the random effects. However, it is not easy to estimate the random effects covariance matrix in the MREMs because the matrix is high-dimensional and must be positive-definite. To solve these restrictions, we introduce two modeling approaches of the random effects covariance matrix: partial autocorrelation and the modified Cholesky decomposition. These proposed methods are illustrated with the real data from Korean genomic epidemiology study.

Keywords

References

  1. Agresti, A. (2002). Categorical Data Analysis, 2nd ed., Wiley and Sons, New York.
  2. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 125-134.
  3. Choi, N. and Huh, J. (2014). A longitudinal study for child aggression with Korea welfare panel study data. Journal of the Korean Data & Information Science Society, 25, 1439-1447. https://doi.org/10.7465/jkdi.2014.25.6.1439
  4. Daniels, M. J. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika, 89, 553-566. https://doi.org/10.1093/biomet/89.3.553
  5. Daniels, M. J. and Pourahmadi, M. (2009). Modelling covariance matrices via partial autocorrelations. Journal of Multivariate Analysis, 100, 2352-2363. https://doi.org/10.1016/j.jmva.2009.04.015
  6. Daniels, M. J. and Zhao, Y. D. (2003). Modeling repeated count data subject to informative dropout. Statistics in Medicine, 22, 1631-1647. https://doi.org/10.1002/sim.1470
  7. Fitzmaurice, G. M. and Laird, N. M. (1993). A likelihood-based method for analysing longitudinal binary response. Biometrika, 80, 141-151. https://doi.org/10.1093/biomet/80.1.141
  8. Heagerty, P. J. (1999). Marginally speci ed logistic-normal models for longitudinal binary data. Biometrics, 55, 688-698. https://doi.org/10.1111/j.0006-341X.1999.00688.x
  9. Heagerty, P. J. (2002). Marginalized transition models and likelihood inference for longitudinal categorical data. Biometrics, 58, 342-351. https://doi.org/10.1111/j.0006-341X.2002.00342.x
  10. Heagerty, P. J. and Kurland, B. F. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika, 88, 973-985. https://doi.org/10.1093/biomet/88.4.973
  11. Jeon, J. and Lee, K. (2014). Review and discussion of marginalized random effects models. Journal of the Korean Data & Information Science Society, 25, 1263-1272. https://doi.org/10.7465/jkdi.2014.25.6.1263
  12. Joe, H. (2006). Generating random correlation matrices based on partial correlations. Journal of Multivariate Analysis, 97, 2177-2189. https://doi.org/10.1016/j.jmva.2005.05.010
  13. Lee, K. and Daniels, M. J. (2008). Marginalized models for longitudinal ordinal data with application to quality of life studies. Statistics in Medicine, 27, 4359-4380. https://doi.org/10.1002/sim.3352
  14. Lee, K., Joo, Y., Yoo, J. K. and Lee, J. (2009). Marginalized random effects models for multivariate longitudinal binary data. Statistics in Medicine, 28, 1287-1300.
  15. Lee, K. and Mercante, D. (2010). Longitudinal nominal data analysis using marginalized models. Computational Statistics and Data Analysis, 54, 208-218. https://doi.org/10.1016/j.csda.2009.08.005
  16. Lee, K., Kang, S., Liu, X. and Seo, D. (2011). Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models. Journal of Applied Statistics, 38, 1577-1590. https://doi.org/10.1080/02664763.2010.515675
  17. Lee, K., Lee, J., Hagan, J and Yoo, J. K. (2012). Modelling the random effects covariance matrix for generalized linear mixed models. Computational Statistics and Data Analysis, 56, 1545-1551. https://doi.org/10.1016/j.csda.2011.09.011
  18. Lee, K., Daniels, M. J. and Joo, Y. (2013). Flexible marginalized models for bivariate longitudinal ordinal data. Biostatistics, 14, 462-476. https://doi.org/10.1093/biostatistics/kxs058
  19. Pan, J. and MacKenzie, G. (2003). On modelling mean-covariance structure in longitudinal studies. Biometrika, 90, 239-244. https://doi.org/10.1093/biomet/90.1.239
  20. Pan, J. and MacKenzie, G. (2007). Modelling conditional covariance in the linear mixed model. Statistical Modelling, 7, 49-71. https://doi.org/10.1177/1471082X0600700104
  21. Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika, 86, 677-690. https://doi.org/10.1093/biomet/86.3.677
  22. Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika, 87, 425-435. https://doi.org/10.1093/biomet/87.2.425
  23. Wang, Y. and Daniels, M. J. (2013). Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances. Journal of Multivariate Analysis, 116, 130-140. https://doi.org/10.1016/j.jmva.2012.11.010
  24. Wannamethee, S. G., Shaper, A. G., Lennon, L., Morris, R. W. (2006). Metabolic syndrome vs Framingham risk score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Journal of the American Medical Association, 295 819-821. https://doi.org/10.1001/jama.295.7.819

Cited by

  1. Poisson linear mixed models with ARMA random effects covariance matrix vol.28, pp.4, 2017, https://doi.org/10.7465/jkdi.2017.28.4.927