DOI QR코드

DOI QR Code

The Effect of Domain Wall on Defect Energetics in Ferroelectric LiNbO3 from Density Functional Theory Calculations

  • Lee, Donghwa (School of Materials Science and Engineering, Chonnam National University)
  • Received : 2016.04.13
  • Accepted : 2016.05.04
  • Published : 2016.05.31

Abstract

The energetics of defects in the presence of domain walls in $LiNbO_3$ are characterized using density-functional theory calculations. Domain walls show stronger interactions with antisite defects than with interstitial defects or vacancies. As a result, antisite defects act as a strong pinning center for the domain wall in $LiNbO_3$. Analysis of migration behavior of the antisite defects across the domain wall shows that the migration barrier of the antisite defects is significantly high, such that the migration of antisite defects across the domain wall is energetically not preferable. However, further study on excess electrons shows that the migration barrier of antisite defects can be lowered by changing the charge states of the antisite defects. So, excess electrons can enhance the migration of antisite defects and thus facilitate domain wall movement by weakening the pinning effect.

Keywords

References

  1. D. G. Lim, B. S. Jang, S. I. Moon, C. Y. Won, and J. Yi, "Characteristics of $LiNbO_3$ Memory Capacitors Fabricated Using a Low Thermal Budget Process," Solid.State Electron., 45 [7] 1159-63 (2001). https://doi.org/10.1016/S0038-1101(01)00042-9
  2. J. Macario, P. Yao, R. Shireen, C. A. Schuetz, S. Y. Shi, and D. W. Prather, "Development of Electro-Optic Phase Modulator for 94 GHz Imaging System," J. Lightwave Technol., 27 [24] 5698-703 (2009). https://doi.org/10.1109/JLT.2009.2035641
  3. A. Tehranchi and R. Kashyap, "Efficient Wavelength Converters with Flattop Responses Based on Counterpropagating Cascaded SFG and DFG in Low-Loss QPM $LiNbO_3$ Waveguides," Opt. Express, 17 [21] 19113-19 (2009). https://doi.org/10.1364/OE.17.019113
  4. K. K. Wong, "Properties of Lithium Niobate," EMIS Datareviews, 28, INSPEC, The Institution of Electrical Engineers, United Kingdom, Lon-don, 2002.
  5. T. Volk and M. Wohlecke, "Lithium Niobate: Defects, Photo-refraction and Ferroelectric Switching," Springer Series in MATERIALS SCIENCE, 115, Springer, Berlin, 2008.
  6. Y. H. Han and D. M. Smyth, "Nonstoichiometry and Defects in Linbo3," Am. Ceram. Soc. Bull., 62 [8] 852 (1983).
  7. H. M. Obryan, P. K. Gallagher, and C. D. Brandle, "Congruent Composition and Li-Rich Phase-Boundary of $LinbO_3$," , 68 [9] 493-96 (1985). https://doi.org/10.1111/j.1151-2916.1985.tb15816.x
  8. P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, "Preparation and Characterization of Off-Congruent Lithium-Niobate Crystals," 71 [2] 875-79 (1992). https://doi.org/10.1063/1.351308
  9. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, "Comparative-Study of Defect Structures in Lithium-Niobate with Different Compositions," , 101 [2] 340-52 (1992). https://doi.org/10.1016/0022-4596(92)90189-3
  10. W. Bollmann, "Stoichiometry And Point-Defects in Lithium-Niobate Crystals," Cryst. Res. Technol., 18 [9] 1147-49 (1983). https://doi.org/10.1002/crat.2170180914
  11. O. F. Schirmer, O. Thiemann, and M. Wohlecke, "Defects in linbo3 .1. Experimental Aspects," J. Phys. Chem. Solids, 52 [1] 185 (1991). https://doi.org/10.1016/0022-3697(91)90064-7
  12. H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, "Computer-Simulation Studies of Intrinsic Defects in $LinbO_3$ Crystals," Phys. Rev. B, 40 [17] 11909 (1989). https://doi.org/10.1103/PhysRevB.40.11909
  13. H. X. Xu, D. Lee, J. He, S. B. Sinnott, V. Gopalan, V. Dierolf, and S. R. Phillpot, "Stability of Intrinsic Defects and Defect Clusters in $LiNbO_3$ from Density Functional Theory Calculations," Phys. Rev. B, 78 [17] 174103 (2008). https://doi.org/10.1103/PhysRevB.78.174103
  14. H. X. Xu, D. Lee, S. B. Sinnott, V. Dierolf, V. Gopalan, and S. R. Phillpot, "Structure and Diffusion of Intrinsic Defect Complexes in $LiNbO_3$ from Density Functional Theory Calculations," J. Phys.: Condens. Matter, 22 [13] 135002 (2010). https://doi.org/10.1088/0953-8984/22/13/135002
  15. V. Gopalan, V. Dierolf, and D. A. Scrymgeour, "Defect-Domain Wall Interactions in Trigonal Ferroelectrics," Annu. Rev. Mater. Res., 37 449-89 (2007). https://doi.org/10.1146/annurev.matsci.37.052506.084247
  16. D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, "Phenomenological Theory of a Single Domain Wall in Uniaxial Trigonal Ferroelectrics: Lithium Niobate and Lithium Tantalate," Phys. Rev. B, 71 [18] 184110 (2005). https://doi.org/10.1103/PhysRevB.71.184110
  17. D. Lee, H. Xu, V. Dierolf, V. Gopalan, and S. R. Phillpot, "Structure and Energetics of Ferroelectric Domain Walls in $LiNbO_3$ from Atomic-level Simulations," Phys. Rev. B, 82 [1] 014104 (2010). https://doi.org/10.1103/PhysRevB.82.014104
  18. D. Lee, R. K. Behera, P. Wu, H. X. Xu, S. B. Sinnott, S. R. Phillpot, L. Q. Chen, and V. Gopalan, "Mixed Bloch-Neel-Ising Character of $180^{\circ}$ Ferroelectric Domain Walls," Phys. Rev. B, 80 [6] 060102(R) (2009).
  19. D. Lee, H. Xu, V. Dierolf, V. Gopalan, and S. R. Phillpot, "Shape of Ferroelectric Domains in $LiNbO_3$ and $LiTaO_3$ from Defect/Domain-Wall Interactions," Appl. Phys. Lett., 98 [9] 092903 (2011). https://doi.org/10.1063/1.3560343
  20. G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, "Local Probing of the Interaction between Intrinsic Defects and Ferroelectric Domain Walls in Lithium Niobate," Appl. Phys. Lett., 102 [4] 042905 (2013). https://doi.org/10.1063/1.4789779
  21. W. Kohn and L. J. Sham, "Self-Consistent Equations Including Exchange And Correlation Effects," Phys. Rev., 140 [4A] A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  22. J. P. Perdew and W. Yue, "Accurate and Simple Density Functional For The Electronic Exchange Energy - Generalized Gradient Approximation," Phys. Rev. B, 33 [12] 8800 (1986). https://doi.org/10.1103/PhysRevB.33.8800
  23. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-Zone Integrations," Phys. Rev. B, 13 [12] 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  24. G. Kresse and J. Furthmuller, "Efficiency of ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  25. G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, 54 [16] 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  26. P. E. Blochl, "Projector Augmented-Wave Method," Phys. Rev. B, 50 [24] 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  27. Q. K. Li, B. Wang, C. H. Woo, H. Wang, and R. Wang, "First-Principles Study on the Formation Energies of Intrinsic Defects in $LiNbO_3$," J. Phys. Chem. Solids, 68 [7] 1336-40 (2007). https://doi.org/10.1016/j.jpcs.2007.02.035
  28. P. Pulay, "Convergence Acceleration Of Iterative Sequences - The Case Of Scf Iteration," Chem. Phys. Lett., 73 [2] 393-98 (1980). https://doi.org/10.1016/0009-2614(80)80396-4
  29. H. Jonsson, G. Mills, and K. W. Jacobsen, "Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions," CLASSICAL AND QUAN-TUM DYNAMICS IN CONDENSED PHASE SIMULATIONS, pp. 385, World Scientific, 1998.
  30. G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 113 [22] 9901-4 (2000). https://doi.org/10.1063/1.1329672
  31. D. Lee, Structure and dynamics of interfaces in organic and inorganic materials using atomic level simulation (in English), pp. 111 in Ph.D. Thesis, University of Florida, Gainesville, Fl, 2010.
  32. L. He and D. Vanderbilt, "First-Principles Study of Oxygen-Vacancy Pinning of Domain Walls in $PbTiO_3$," Phys. Rev. B, 68 [13] 134103 (2003). https://doi.org/10.1103/PhysRevB.68.134103

Cited by

  1. using GGA-PBE and TB-mBJ functionals: A DFT study vol.32, pp.14, 2018, https://doi.org/10.1142/S0217979218501680