DOI QR코드

DOI QR Code

A Study on Shock-induced Detonation in Gap Test

충격 전달에 의한 Gap Test의 폭굉 반응 해석

  • Kim, Bohoon (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kang, Wonkyu (Energetic Material & Pyrotechnics Department, Hanwha Corporation R&D Institute) ;
  • Jang, Seung-gyo (The 4th R&D Institute - 2nd Directorate, Agency for Defense Development) ;
  • Park, Jungsu (The 4th R&D Institute - 2nd Directorate, Agency for Defense Development) ;
  • Yoh, Jai-ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2015.12.01
  • Accepted : 2016.03.14
  • Published : 2016.04.01

Abstract

A pyrotechnic system consisting of donor/acceptor pair separated by a gap relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor charges. Despite of its common use, numerical study of such pyrotechnic train configuration is seldom reported because proper modeling of the full process requires precise capturing of the shock wave attenuation in the gap prior to triggering a full detonation of high explosive and accurate description of the high strain rate dynamics of the explosively loaded inert confinements. We apply a Eulerian level-set based multimaterial hydrocode with reactive flow models for pentolite donor and heavily aluminized RDX as acceptor charge. The complex shock interaction, critical gap thickness, acoustic impedance, and go/no-go characteristics of the gap test are quantitatively investigated.

감쇠기를 사이에 두고 여폭약과 수폭약으로 충전된 파이로 착화기는 격벽의 압력 감쇠 현상과 고에너지 물질의 충격 점화 특성을 갖는다. 고폭약의 폭굉 반응 및 비반응 물질 통과에의 폭압 감쇠와 더불어 격벽의 형상 변화를 모사하기 위해서는 충격 전달에 의한 gap test의 폭굉 모델링이 필요하다. 본 연구에서는 오일러리안 레벨셋 기법이 적용된 다중물질 하이드로 코드를 사용하여 pentolite 작약과 열폭압 RDX의 폭발 반응 및 PMMA gap을 통과하는 충격파 전달을 해석함으로써 화약-격벽간 상호작용 및 임계 두께, 음향 임피던스, go/no-go 기폭 점화에 대한 특성을 정량화하였다.

Keywords

References

  1. Kimura, E. and Oyumi, Y., "Sensitivity of Solid Rocket Propellants for Card Gap Test," Propellants, Explosives, Pyrotechnics, Vol. 24, No. 2, pp. 90-94, 1999. https://doi.org/10.1002/(SICI)1521-4087(199904)24:2<90::AID-PREP90>3.0.CO;2-W
  2. Kubota, S., Ogata, Y., Wada, Y., Katoh, K., Saburi, T., Yoshida, M. and Nagayama, K., "Observation of Shock Initiation Process in Gap Test," AIP Conference Proceedings, Vol. 845, pp. 1085-1088, 2006. https://doi.org/10.1063/1.2263511
  3. Wall, C. and Franson, M., "Validation of a Pressed Pentolite Donor for the Large Scale Gap Test at DSTO," DSTO TN-1172, 2013.
  4. Jang, S.G. and Baek, S.H., "Studies on Through-Bulkhead Initiation Module using VISAR," Journal of the Korean Society of Propulsion Engineers, Vol. 14, No. 4, pp. 16-24, 2010.
  5. Lee, J.S., Park, J.S. and Lee, Y.S., "Study on the Computational Simulation of Large Scale Gap Test," Journal of the Korea institute of Military Science and Technology, Vol. 14, No. 5, pp. 932-940, 2011. https://doi.org/10.9766/KIMST.2011.14.5.932
  6. Lee, J.W. and Yoh, J.I., "Study of Supersonic Flame Acceleration within AN-based High Explosive Containing Various Gap Materials," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 4, pp. 32-42, 2013. https://doi.org/10.6108/KSPE.2013.17.4.032
  7. Kim, B., Park, J., Lee, K. and Yoh, J.J., "A reactive flow model for heavily aluminized cyclotrimethylene-trinitramine," Journal of Applied Physics, Vol. 116, 023512, pp. 1-9, 2014.
  8. Piacesi, D.Jr., "Numerical Hydordynamic Calculations of the Flow of the Detonation Products form a Point-initiated Explosive Cylinder," NOL NOLTR-66-150, 1967.
  9. Steinberg, D.J., "Equation of State and Strength Properties of Selected Materials," LLNL UCRL-MA-106439, 1996.
  10. Fried, L.E., Howard, W.M. and Souers, P.C., "Cheetah 2.0 User's Manual," LLNL UCRL-MA-117541 Rev. 5, 1998.
  11. Erkman, J.O., Edwards, D.J., Clairmont, A.R. and Price, D., "Calibration of the NOL Large Scale Gap Test; Hugoniot Data for Polymethyl Methacrylate," NOL NOLTR-73-15, 1973.
  12. Braithwaite, C.H., Pachman, J., Majzlik, J. and Williamson, D.M., "Recalibration of the Large Scale Gap-Test to a Stress Scale," Propellants, Explosives, Pyrotechnics, Vol. 37, No. 5, pp. 614-620, 2012. https://doi.org/10.1002/prep.201200006

Cited by

  1. Hydrodynamic Analysis on Shock-induced Detonation in Pyrotechnic Initiator vol.20, pp.5, 2016, https://doi.org/10.6108/KSPE.2016.20.5.019